Атомная энергетика. Ядерные реакторы АЭС. Атомный флот. Ядерное оружие

РБМК-1000
Гражданский суда
Авиация

БРЕСТ — энергоблок с быстрым реактором со свинцовым теплоносителем

Первые реакторы на быстрых нейтронах появились ещё на заре атомной эры. Целью их создания тогда было расширенное производство плутония для ядерного оружия. Однако уже в 1960-х, с началом массового строительства атомных электростанций, тема получила новое звучание. Дело в том, что в обычных, тепловых, реакторах используется только уран-235, содержание которого в природном уране меньше 1 %. А в реакторах на быстрых нейтронах идёт наработка этого изотопа за счёт деления урана-238. После переработки ОЯТ полученные ядерные материалы можно вновь использовать. Кроме того, с переходом на быстрые реакторы в топливный цикл может быть вовлечён торий-232, запасы которого в несколько раз превышают запасы урана. Перед атомщиками открывался почти неисчерпаемый источник энергии. Попутно решалась проблема хранения ОЯТ. От многообещающей перспективы захватывало дух.

Оригинальный подход в развитии БН-реакторов демонстрирует НИКИЭТ, разработавший проект реакторной установки БРЕСТ для атомных электростанций высокой безопасности и экономичности для крупномасштабной ядерной энергетики будущего.

БРЕСТ — энергоблок с быстрым реактором со свинцовым теплоносителем и мононитридным уран-плутониевым топливом с двухконтурной схемой отвода тепла к турбине с закритическими параметрами пара. Предлагаются проекты в конфигурациях с электрической мощностью 300 и 1200 МВт.

Быстрые реакторы – энергетические реакторы, работающие в отличие от реактора на тепловых нейтронах в основном на быстрых нейтронах, с энергиями более 1 МэВ. Быстрые реакторы обычно работают на плутониевом топливе и, преобразуя U 238, производят плутония больше, чем потребляют, то есть имеют коэффициент воспроизводства больше единицы. Поэтому они называются также реакторами-размножителями, или бридерами (от англ. to breed – размножаться).

Первый экспериментальный реактор на быстрых нейтронах «Клементина» построен в США в 1946 году. В 1951 году запущен энергетический бридер EBR-1 с коэффициентом воспроизводства делящихся ядер больше единицы. Первый советский экспериментальный стенд нулевой мощности БР-1 был пущен в Обнинске в 1956 году.

 Реактор «Брест», также известный как «проект Прорыв» 

Реактор «Брест», также известный как «проект Прорыв», призван решить такое огромное количество международных проблем.

Физический пуск реактора БРЕСТ-ОД-300 планируется на 2019 год, энергетический пуск – на 2020 год, говорится в материалах конференции по новой технологической платформе атомной энергетики.

Технический проект реакторной установки (РУ) проекта БРЕСТ-ОД-300 должен был быть готов в июне 2014 года, доработанный проект по итогам НИОКР ожидается в декабре 2016 года.

Согласно материалам, в 2015-2018 годах должны быть определены ресурсные характеристики элементов РУ, скорректирован технический проект для получения лицензии на эксплуатацию. Разработка рабочей документации и изготовление оборудования запланированы на 2016-2019 годы.

По проекту в 2013 году были утверждены технические задания на тепловыделяющие элементы и (ТВЭЛ) и тепловыделяющую сборку (ТВС), создан макет днища корпуса РУ, начаты экспериментальные работы. Ядерные станции дают нашей стране 17% электроэнергии, на Северо-Западе РФ – более 40%. В стране пашут 10 АЭС, 33 энергоблока. Всё это – обычные реакторы так называемого разом¬кнутого цикла. Они работают на низкообогащённом уране, сильно не дожигают топливо, в результате копятся горы радиоактивных отходов.

Набралось уже 18 тыс. т отработанного урана, и каждый год добавляется 670 тонн. В мире 345 тыс. т этих проблемных отходов, из них 110 тыс. у США. Промышленные технологии переработки есть только у двух стран: России и Франции.

Проблему может решить только реактор нового типа, действующий по замкнутому циклу. Заодно он поможет справиться с утечками военных ядерных технологий. Замкнутые реакторы можно поставлять любым странам, поскольку на них в принципе нельзя получить сырьё для ядерных зарядов.

Но главное – безопасность. Замкнутый цикл можно запустить на старом, отработанном топливе. «Даже грубые подсчёты говорят, что запасов отработанного урана, накопленных за 60 лет работы атомной отрасли, хватит на несколько сотен лет генерации», – говорит доктор А. Крюков.

«Брест» и есть тот революционный проект. Работы над ним начались ещё в конце 1980-х гг., их ведёт знаменитый разработчик ядерных установок для подводных лодок НИИ Энерготехники (НИИЭТ). Поворотным моментом стало выступление В. Путина на «саммите тысячелетия» в ООН.

Там он пообещал миру новую ядерную энергетику, чистую, безопасную, исключающую оружейное применение. Речь шла как раз о «Брестах». С тех пор дело сильно двинулось вперёд. В 2010 г. правительство приняло госпрограмму «Ядерные технологии нового поколения до 2015 года» с бюджетом 160 млрд рублей.

Срок подошёл, проект готов, технические документы уже на госкомиссии. Тем временем Росатом начал строительство завода, на котором отработанное топливо будет превращаться в обогащённые таблетки для «Бреста».

Первый опытный образец получит мощность 300 МВт, серийные «Бресты» будут на 700–1200 мегаватт. Это больше мощности основной тягловой лошадки сегодняшней российской атомной энергетики, реактора ВВЭР-1000.

Достоинства реактора:

  • естественная радиационная безопасность при любых возможных авариях по внутренним и внешним причинам, включая диверсии, не требующая эвакуации населения;
  • долговременная (практически неограниченная во времени) обеспеченность топливными ресурсами за счет эффективного использования природного урана;
  • нераспространение ядерного оружия за счет исключения наработки плутония оружейного качества и пристанционной реализации технологии сухой переработки топлива без разделения урана и плутония;
  • экологичность производства энергии и утилизации отходов за счет замыкания топливного цикла с трансмутацией и сжиганием в реакторе актиноидов, трансмутацией долгоживущих продуктов деления, очисткой РАО от актиноидов, выдержкой и захоронением РАО без нарушения природного радиационного равновесия;
  • экономическая конкурентоспособность за счет естественной безопасности АЭС и технологий топливного цикла, отказа от сложных инженерных систем безопасности, подпитки реактора только 238U, высоких параметров свинца, обеспечивающих закритические параметры паротурбинного контура и высокий КПД термодинамического цикла, удешевления строительства.

Сочетание природных свойств свинцового теплоносителя, мононитридного топлива, физических характеристик быстрого реактора, конструкторских решений активной зоны и контуров охлаждения выводит БРЕСТ на качественно новый уровень естественной безопасности и обеспечивает его устойчивость без срабатывания активных средств аварийной защиты в крайне тяжелых авариях, непреодолимых ни одним из существующих и проектируемых реакторов:

  • самоход всех органов регулирования
  • отключение (заклинивание) всех насосов первого контура
  • отключение (заклинивание) всех насосов второго контура
  • разгерметизация корпуса ректора
  • разрыв трубопроводов второго контура по любому сечению или трубок парогенератора
  • наложение различных аварий
  • неограниченное по времени расхолаживание при полном отключении питания и др.

Даже предельные аварии диверсионного происхождения с разрушением внешних барьеров (здания реактора, крышки корпуса и др.) не приводят к радиоактивным выбросам, требующим эвакуации населения и длительного отчуждения земли.

В качестве одной из таких аварий (произошедшей вследствие диверсии) рассматривалось разрушение корпуса реактора (крышки) и здания, в результате которой реактор переходит с номинальной мощности в заглушенное состояние с временным повышением температуры теплоносителя в объеме реактора ~1000К, твэлы сохраняют свою целостность и утечка радиоактивности из топлива остается на проектном уровне, выброс радионуклидов из реактора за аварию составит < 1000 Kи (в эквиваленте по 131I). Такой выброс соответствует пятому уровню по международной шкале событий на АЭС, не требующей эвакуации населения. Меры по очистке свинца от висмута и других радионуклидов позволили бы снизить последствия аварии до четвертого или даже до третьего уровня.

В настоящее время выполнены концептуальные проекты реакторов мощностью 300 (рис.1) и 1200 МВт (эл) (рис.2), проведены их конструкторские и расчетные исследования. Проведены эксперименты на U-Pu-Pb критсборках по обоснованию физических характеристик с корректировкой ядерных данных, длительные коррозионные испытания сталей на циркуляционных Pb-петлях, эксперименты по взаимодействию Pb с воздухом и водой высоких параметров, нитридного топлива с Pb и стальной оболочкой и др.

Выполненные экономические оценки и сравнения подтверждают возможность снижения капитальных затрат на АЭС и стоимости производимой электроэнергии по сравнению с АЭС с реактором ВВЭР.

Реализовать проект НИКИЭТ предлагается путём строительства опытно-демонстрационной станции с реакторной установкой БРЕСТ-ОД-300 с пристанционным топливным циклом на площадке Белоярской АЭС.

Такой комплекс, расположенный рядом с реактором, — очередное преимущество БРЕСТа с точки зрения создания ЗЯТЦ. По мнению сторонников быстрых энергетических реакторов этого типа, характеристики безопасности делают возможным их строительство вблизи крупных населённых пунктов, в том числе в роли атомных станций теплоснабжения.

Выполненные экономические оценки и сравнения подтверждают возможность снижения капитальных затрат на АЭС и стоимости производимой электроэнергии по сравнению с АЭС с реактором ВВЭР.

Реализовать проект НИКИЭТ предлагается путём строительства опытно-демонстрационной станции с реакторной установкой БРЕСТ-ОД-300 с пристанционным топливным циклом на площадке Белоярской АЭС.

Такой комплекс, расположенный рядом с реактором, — очередное преимущество БРЕСТа с точки зрения создания ЗЯТЦ. По мнению сторонников быстрых энергетических реакторов этого типа, характеристики безопасности делают возможным их строительство вблизи крупных населённых пунктов, в том числе в роли атомных станций теплоснабжения.

• Внутри реактора давление атмосферное -> меньше опасность взрыва (в водных реакторах давление 50-150 атмосфер даже в обычных условиях, а уж при аварии ...).

• Как следствие, нет необходимости в стальном коконе вокруг всей этой байды - огромное давление держать нет необходимости

• Всеядность - 238й уран, которого в природе в десятки раз больше 235го, и плутоний, который в больших количествах нарабатывается в набившем оскомину "отработанном ядерном топливе". То есть, по сути, ОЯТ это практически готовое топливо для реакторов на БН.

Плюс к тому, у данного реактора свинцовый теплоноситель - отлично придумано. Даже в самом крайнем случае активная зона стечёт на дно реактора и автоматически сверху накроется толстенным слоем свинца, который заэкранирует радиацию. Плюс к тому, свинец поглощает нейтроны и минимизирует реакции ядерного синтеза. У нынешних реакторов на БН в качестве теплоносителя используется натрий, а он жутко химически активен, в случае прорыва контура входит в бурную реакцию с водой, горит и так далее. Хорошо не ядовит.

Общий вид реактора БРЕСТ-300:

Общий вид реактора БРЕСТ-300

Общий вид реактора БРЕСТ-1200:

Общий вид реактора БРЕСТ-1200

На главную