.
Расчет сложных трехфазных цепей Расчет токов коротких замыканий

Расчет электрических цепей в курсовых по электротехнике

Основное свойство любых переменных функций (е, u, i) в симметричной трехфазной системе состоит в том, что сумма их мгновенных значений в любой момент времени равна нулю, например, еА + еВ + еС = 0. Найдем эту сумму для разных моментов времени:

;

;

.

Как следует из векторной диаграммы рис. 87, геометрическая сумма векторов фазных ЭДС также равна нулю:

.

Если нагрузка отдельных фаз равна между собой, т.е. , то фазные токи будут равны по модулю и сдвинуты по фазе относительно своих ЭДС (напряжений ) на один и тот же угол φ, а между собой, как и ЭДС, будут сдвинуты по фазе на 120о. Следовательно, фазные токи iА, iВ, iС образуют симметричную трехфазную систему и для них будут справедливы полученные ранее выводы: iА + iВ + iС = 0; IА + IВ + IС = 0.

Преобразуем несвязанную трехфазную систему рис. 1 в связанную путем объединения трех обратных приводов в один общий привод. Согласно 1-ому закону Кирхгофа в общем проводе должен протекать суммарный ток iN = iА + iВ + iC = 0. Это означает, что потребность в обратном проводе вообще отпадает, благодаря чему достигается значительная экономия проводов при передаче энергии от трехфазного генератора к приемнику.

Потенциальная диаграмма

Потенциальная диаграмма применяется при анализе цепей постоянного тока. Она представляет собой график распределения потенциала вдоль участка цепи или контура, при этом по оси абсцисс откладываются сопротивления резистивных элементов, встречающихся на пути обхода ветви или контура, а по оси ординат – потенциалы соответствующих точек. Таким образом, каждой точке рассматриваемого участка или контура соответствует точка на потенциальной диаграмме.

Рассмотрим построение потенциальной диаграммы на примере схемы на рис. 3.

При параметрах схемы ; ; ; ; &токи в ветвях схемы равны: ; ; .


Метод контурных токов