Расчёт трёхфазной цепи Резонанс в электрических цепях

Расчет электрических цепей в курсовых по электротехнике

Электрическая цепь с последовательным соединением элементов R, L и C

 

 

 

Пусть в заданной схеме с последовательным соединением элементов R, L и C (рис. 47) протекает переменный ток

. Метод комплексных амплитуд Понятие о символических методах.

По 2-му закону Кирхгофа для мгновенных значений функций получим уравнение в дифференциальной форме:

.

То же уравнение в комплексной форме получит вид:

где  - комплексное сопротивление,  - реактивное (эквивалентное) сопротивление,  - модуль комплексного или полное сопротивление,  - аргумент комплексного сопротивления или угол сдвига фаз между напряжением и током на входе схемы. При  фазный угол φ>0, при этом цепь в целом носит активно-индуктивный характер, а при  и φ<0 – цепь в целом носит активно-емкостный характер.

Уравнение закона Ома для последовательной схемы будет иметь вид: 

  - в комплексной форме,

  - в обычной форме для модулей.

 

Векторная диаграмма тока и напряжений при φ>0 показана на рис. 48.

В рассматриваемой цепи на переменном токе будут происходить одновременно два физических процесса: преобразование энергии в другие виды в резисторе R (активный процесс) и взаимный обмен энергией между магнитным полем катушки, электрическим полем конденсатора и источником энергии (реактивный процесс).

Тогда получаем матричное уравнение вида:

.&

(19)

Данное уравнение представляет собой узловые уравнения в матричной форме. Если обозначить

(20)

,&

(21)

то получим матричную форму записи уравнений, составленных по методу узловых потенциалов:

(22)

где &- матрица узловых проводимостей; &- матрица узловых токов.

В развернутом виде соотношение (22) можно записать, как:

(23)

то есть получили известный из метода узловых потенциалов результат.

По 2-му закону Кирхгофа для мгновенных значений функций получим уравнение в дифференциальной форме:

.

То же уравнение в комплексной форме получит вид:

Электрическая цепь с параллельным соединением элементов R, L и С

 

 

Пусть на входе схемы рис. 49 действует переменное напряжение:

По 1-му закону Кирхгофа для мгновенных значений функций получаем уравнение в дифференциальной форме:

То же уравнение в комплексной форме получит вид:

,

где  - комплексная проводимость,  - активная проводимость,  - реактивная индуктивная проводимость,  - реактивная емкостная проводимость,  - реактивная (эквивалентная) проводимость,  - модуль комплексной проводимости или полная проводимость,  - аргумент комплексной проводимости или угол сдвига фаз между напряжением и током на входе схемы. При  и φ>0 – цепь в целом носит активно-индуктивный характер, а при  и φ<0 – цепь в целом носит активно-емкостный характер.

Уравнение закона Ома для параллельной схемы будет иметь вид:

Активные и реактивные составляющие токов и напряжений

При расчете электрических цепей переменного тока реальные элементы цепи (приемники, источники) заменяются эквивалентными схемами замещения, состоящими из комбинации идеальных схемных элементов R, L и С.

Пусть некоторый приемник энергии носит в целом активно-индуктивный характер (например, электродвигатель). Такой приемник может быть представлен двумя простейшими схемами замещения, состоящими из 2-х схемных элементов R и L: а) последовательной (рис. 51а) и б) параллельной (рис. 51б):

 

Обе схемы будут эквивалентны друг другу при условии равенства параметров режима на входе: , .

Для последовательной схемы (рис. 51а) справедливы соотношения:

Последовательной схеме замещения соответствует представление вектора напряжения в виде суммы двух составляющих: активной составляющей Uа, совпадающей с вектором тока I, и реактивной составляющей Uр, перпендикулярной к вектору тока (рис. 52а):

 

Из геометрии рис. 52а следуют соотношения: . Треугольник, составленный из векторов , ,  получил название треугольника напряжений.

Если стороны треугольника напряжений разделить на ток I, то получится новый треугольник, подобный исходному, но сторонами которого являются полное сопротивление Z, активное сопротивление R и реактивное сопротивление X. Треугольник со сторонами Z, R, X  называется треугольником сопротивлений (рис. 52б). Из треугольника сопротивлений следуют соотношения: R=Z×cosφ, X=Z×sinφ, , .

Параллельной схеме замещения соответствует представление вектора тока в виде суммы двух составляющих: активной составляющей Iа, совпадающей с вектором напряжения U, и реактивной составляющей Iр, перпендикулярной к вектору U (рис. 53а):

Двухполюсником называется устройство или часть схемы (цепи) с двумя выводами (полюсами). Если внутри двухполюсника содержатся источники энергии, то он называется активным (A), в противном случае – пассивным (П).

Энергетические характеристики передачи энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику) на переменном токе зависят от соотношения параметров приемника и источника между собой (рис. 54)

Компенсация реактивной мощности приемников энергии

Активная мощность приемника P=UIcosj характеризует интенсивность потребления им энергии и зависит от режима его работы.

Реактивная мощность приемника Q=UIsinj  характеризует интенсивность обмена энергией между электромагнитным полем приемника и остальной цепью. Эта мощность положительна при индуктивном характере приемника () и отрицательна при емкостном характере (). В промышленных условиях преобладающее большинство приемников имеют активно-индуктивный характер () и потребляют положительную реактивную мощность. Параллельное подключение к таким приемникам конденсаторов, потребляющих отрицательную реактивную мощность  и, таким образом, являющихся генераторами реактивной мощности для приемников, позволяет уменьшить (компенсировать) суммарную реактивную мощность: .

Компенсация реактивной мощности позволяет при неизменной активной мощности уменьшить потребляемый от сети ток:

При увеличении емкости компенсирующего конденсатора С пропорционально будет увеличиваться потребляемый им ток . Ток линии, равный геометрической сумме токов нагрузки и конденсатора (), вначале будет уменьшаться (при QL>QC), достигнет своего минимального значения при полной компенсации реактивной мощности , а затем начнет возрастать при QC > QL (рис. 57).

 

Из геометрии рис. 57 следует соотношение:

.

Тот же ток из закона Ома:

.

Из совместного решения этих двух уравнений вытекает формула для расчeта емкости компенсирующего устройства от первоначального значения tgj2 до заданного tg:


Метод узловых и контурных уравнений