Реактор на быстрых нейтронах БН-600

В структуре крупномасштабной атомной энергетики важная роль отводится реакторам на быстрых нейтронах с замкнутым топливным циклом. Они позволяют почти в 100 раз повысить эффективность использования естественного урана и, тем самым, снять ограничения на развитие атомной энергетики со стороны природных ресурсов ядерного топлива.
В 30 странах мира сейчас работает около 440 ядерных реакторов, которые обеспечивают производство около 17% всей электроэнергии, вырабатываемой в мире. В промышленно развитых странах доля "атомного" электричества составляет, как правило, не менее 30% и неуклонно увеличивается. Однако, по мнению ученых, быстро растущая атомная энергетика, основанная на современных «тепловых» ядерных реакторах, используемых на действующих и строящихся АЭС (большинство - с реакторами типа ВВЭР и LWR), неизбежно уже в текущем столетии столкнется с нехваткой уранового сырья по причине того, что делящимся элементом топлива для этих станций является редкий изотоп урана-235.
В реакторе на быстрых нейтронах (БН) при ядерной реакции деления рождается избыточное количество вторичных нейтронов, поглощение которых в основной массе урана, состоящей из урана-238, ведет к интенсивному образованию нового ядерного делящегося материала плутония-239. В результате, из каждого килограмма урана-235 наряду с выработкой энергии можно получать более одного кг плутония-239, который можно использовать в качестве топлива в любых реакторах АЭС вместо редкого урана-235. Этот физический процесс, называемый воспроизводством топлива, позволит вовлечь в оборот атомной энергетики весь природный уран, включая основную его часть – изотоп уран-238 (99,3% от общей массы ископаемого урана). Этот изотоп в современных АЭС на тепловых нейтронах практически не участвует в производстве энергии. В результате производство энергии при существующих ресурсах урана и при минимальном воздействии на природу, можно было бы увеличить почти в 100 раз. В таком случае атомной энергии человечеству хватит на несколько тысячелетий.
По оценкам ученых, совместная работа "тепловых" и "быстрых" реакторов в пропорции примерно 80:20% обеспечитатомной энергетике наиболее эффективное использование урановых ресурсов. При таком соотношении быстрые реакторы будут производить достаточное количество плутония-239 для работы атомных электростанций с реакторами на тепловых нейтронах.
Дополнительным преимуществом технологии быстрых реакторов с избыточным количеством вторичных нейтронов является возможность "выжигать" долгоживущие (с периодом распада до тысяч и сотен тысяч лет) радиоактивные продукты деления, превращая их в короткоживущие с периодом полураспада не более 200-300 лет. Такие преобразованные радиоактивные отходы могут быть надежно захоронены в специальных хранилищах без нарушения природного радиационного баланса Земли.
 
Работы в области ядерных реакторов на быстрых нейтронах реакторов были начаты в 1960 г. проектированием первого опытно-промышленного энергетического реактора БН-350. Этот реактор был пущен в 1973 г. и успешно эксплуатировался до 1998 г.
В 1980 г. на Белоярской АЭС в составе энергоблока №3 был введен в строй следующий, более мощный энергетический реактор БН-600 (600 МВт(э)), который продолжает надежно работать до настоящего времени, являясь самым крупным из действующих реакторов этого типа в мире. В апреле 2010 г. реактор полностью отработал проектный срок службы 30 лет с высокими показателями надежности и безопасности. В течение длительного периода эксплуатации КИУМ энергоблока поддерживается на стабильно высоком уровне - около 80%. Внеплановые потери менее 1,5%.
За последние 10 лет эксплуатации энергоблока не было ни одного случая аварийного останова реактора.
Выход долгоживущих газоаэрозольных радионуклидов в окружающую среду отсутствует. Выход инертных радиоактивных газов в настоящее время пренебрежимо мал и составляет <1% от допустимого по санитарным нормам.
Эксплуатация реактора убедительно продемонстрировала  надежность проектных мер по предотвращению и локализации течей натрия.
По показателям надёжности и безопасности реактор БН-600 оказался конкурентоспособным с серийными тепловыми реакторами на тепловых нейтронах (ВВЭР).

http://energ2010.ru/Stati/Elektrostanciya/AES/Klassifikaciya_Aes/Reaktor_na_bystr_neytr/Reaktorn_zal_bn_800.JPG

Рисунок 1. Реакторный (центральный) зал БН-600

В 1983 г. на базе БН-600 предприятием был разработан проект усовершенствованного реактора БН-800 для энергоблока мощностью 880 МВт(э). В 1984 г. были начаты работы по сооружению двух реакторов БН-800 на Белоярской и новой Южно-Уральской АЭС. Последующая задержка сооружения этих реакторов была использована для доработки проекта с целью дальнейшего повышения его безопасности и улучшения технико-экономических показателей. Работы по сооружению БН-800 были возобновлены в 2006 г. на Белоярской АЭС (4-й энергоблок) и должны быть завершены в 2013 г.

http://energ2010.ru/Stati/Elektrostanciya/AES/Klassifikaciya_Aes/Reaktor_na_bystr_neytr/Reaktor_bn_800.JPG

Рисунок 2. Реактор на быстрых нейтронах БН-800 (вертикальный разрез)

http://energ2010.ru/Stati/Elektrostanciya/AES/Klassifikaciya_Aes/Reaktor_na_bystr_neytr/Maket_reaktora_bn_800.JPG

Рисунок 3. Макет реактора БН-800

Перед строящимся реактором БН-800 поставлены следующие важные задачи:

Обеспечение эксплуатации на MOX-топливе.

Экспериментальная демонстрация ключевых компонентов закрытого топливного цикла.

Отработка в реальных условиях эксплуатации новых видов оборудования и усовершенствованных технических решений, введенных для повышения показателей экономичности, надежности и безопасности.

Разработка инновационных технологий для будущих реакторов на быстрых нейтронах с жидкометаллическим теплоносителем:

испытания и аттестация перспективного топлива и конструкционных материалов;

демонстрация технологии выжигания минорных актинидов и трансмутации долгоживущих продуктов деления, составляющих наиболее опасную часть радиоактивных отходов атомной энергетики.

Вернуться на главную