Другие разделы курса инженерной графики и начертательной геометрии технического университета

Лекция №2-1

Точка в ортогональной системе двух плоскостей проекций.

Точка

Геометрический объект любой сложности можно рассматривать как геометрическое место точек, по взаимному расположению, которых можно составить представление об объекте, а по расположению их относительно системы координат можно судить о положении его в пространстве.

Точка - одно из основных понятий геометрии. При систематическом изложении геометрии точка обычно принимается за одно из исходных понятий.

В современной математике точкой называют элементы весьма различной природы, из которых состоят различные пространства (например, в n-мерном евклидовом пространстве точкой называют упорядоченную совокупность из n- чисел). [an error occurred while processing this directive]

 

Точка в ортогональной системе двух плоскостей проекций.

При построении проекции необходимо помнить, что ортогональной проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на эту плоскость. На рисунке 2.1. показана точка А и ее ортогональные проекции А1 и А 2. [an error occurred while processing this directive]

Точку А1 называют горизонтальной проекцией точки А, точка А2 - ее фронтальной проекцией. Проекции точки всегда расположены на прямых, перпендикулярных оси x12 и пересекающих эту ось в одной и той же точке А x.

а) модель Получение эпюра точки из модели б) эпюр

Рисунок. 2.1. Точка в системе двух плоскостей проекций

Справедливо и обратное, т. е. Если на плоскостях проекций даны точки А1 и А2 расположенные на прямых, пересекающих ось x12 в точке Аx  под прямым углом, то они являются проекцией некоторой точки А.

На эпюре Монжа проекции А1 и А2 окажутся расположенными на одном перпендикуляре к оси x12. При этом расстояние А1Аx -от горизонтальной проекции точки до  оси равно расстоянию от самой точки А до плоскости П2, а расстояние А2Аx - от фронтальной проекции точки до оси равно расстоянию от самой точки А до плоскости П1.

Прямые линии, соединяющие разноименные проекции точки на эпюре, называются линиями проекционной связи.

а) модель

Получение эпюра из модели

б) эпюр

Рисунок 2.2. Точки в различных четвертях пространства

 На рисунке 2.2 представлены точки A B C D, расположенные в разных четвертях пространства и  их эпюр (A- в первой четверти, B-во второй, C- в третьей и D- четвертой четверти)

Вернуться на главную сайта Dvoika.net