.

Начертательная геометрия Практикум решения задач Конспект по начертательной геометрии Единая система конструкторской документации Инженерная графика Геометрическое черчение

Лекция №2-2

 

Точка в ортогональной системе трех плоскостей проекций

В практике изображения различных геометрических объектов, чтобы сделать проекционный чертеж более ясным, возникает необходимость использовать третью – профильную плоскость проекций П3, расположенную перпендикулярно  к П1 и П2. В соответствии с ГОСТ 2.305-68 плоскости проекций П1 П2 и П3  относятся к  основным плоскостям проекций.

а) модель

Получение эпюра из модели

б) эпюр

Рисунок 2.3. Точка в системе трех плоскостей проекций

 

Модель трех плоскостей проекций показана на рисунке 2.3. Третья плоскость, перпендикулярная и П1,  и П2,  обозначается буквой П3 и называется профильной.

Проекции точек на эту плоскость обозначаются заглавными буквами или цифрами с индексом 3.

Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0.

Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте.

Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают, как показано на рисунке 2.4, до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают.  Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают.

Координатами называют числа, которые ставят в соответствие точке для определения ее положения в пространстве или на поверхности. В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x , y  и  z  (абсцисса, ордината и аппликата).

Рисунок 2.4. Получение эпюра

Получение эпюра из модели трех плоскостей проекций

Таблица 2.1.Знаки координат в октантах

Октант

I

II

III

IV

V

VI

VII

VIII

x

+

+

+

+

-

-

-

-

y

+

-

-

+

+

-

-

+

z

+

+

-

-

+

+

-

-

Если точка принадлежит хотя бы одной плоскости проекций, она занимает частное положение относительно плоскостей проекций. Если точка не принадлежит ни одной из плоскостей проекций, она занимает общее положение.

 

Взаимное расположение точек

Можно выделить три основных варианта взаимного расположения точек:

1.Пусть точки А и В (рис.2.5) расположены в первой четверти так, что:

- YА>YВ. Тогда точка А расположена дальше от плоскости П2 и ближе к наблюдателю, чем точка В

- ZА>ZВ. Тогда точка А расположена дальше от плоскости П1 и ближе к наблюдателю, чем точка В;

- XА<XВ. Тогда точка В расположена дальше от плоскости П3 и ближе к наблюдателю, чем (при взгляде слева) точка А;

а) модель Получение эпюра из модели б)эпюр

Рисунок 2.5. Взаимное расположение точек

2.– YА=YВ, то точки А и В равноудалены от плоскости П2 и их горизонтальные проекции расположатся на прямой А1В1// x12. Геометрическим местом таких точек служит плоскость, параллельная П2.

 ZА=ZВ, то точки А и В равноудалены от плоскости П1 и их фронтальные проекции расположатся на прямой А2В2// x12. Геометрическим местом таких точек служит плоскость, параллельная П1.

 XА=XВ, то точки А и В равноудалены от плоскости П3 и их горизонтальные  и фронтальные проекции расположатся, соответственно, на прямых А1В1// y и А2В2//z . Геометрическим местом таких точек служит плоскость, параллельная П3.

3. Если у точек равны две одноименные координаты, то они называются конкурирующими. Конкурирующие точки расположены на одной проецирующей прямой. На рис. 2.6 даны три пары таких точек, у которых:

а) модель

 

 

Получение эпюра из модели

б) эпюр

Рисунок 2.6. Конкурирующие точки

Соответствующие проекции конкурирующих точек совпадают.

Различают: горизонтально конкурирующие точки А и D, расположенные на горизонтально проецирующей прямой АD ; фронтально конкурирующие точки A и C расположенные на фронтально проецирующей прямой AC; профильно конкурирующие точки A и B, расположенные на профильно проецирующей прямой AB.

    При проецировании на соответствующую плоскость проекций одна точка «закроет» другую точку, конкурирующую с ней, соответствующая проекция которой окажется невидимой.

  

На главную