Продажа косметики

Сервис для выполнения любых видов студенческих работ

Сервис для выполнения любых видов студенческих работ

Биржа студенческих   работ. Контрольные, курсовые, рефераты.

Выполнение 
работ на заказ. Контрольные, курсовые и дипломные работы

Выполнение работ на заказ. Контрольные, курсовые и дипломные работы

Занимайтесь онлайн 
        с опытными репетиторами

Занимайтесь онлайн
с опытными репетиторами

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач

Закажите реферат

Закажите реферат

Начертательная геометрия Практикум решения задач Конспект по начертательной геометрии Единая система конструкторской документации Инженерная графика Геометрическое черчение Кратные интегралы Математический анализ

 

Лекция №8 часть 3
Метод вспомогательных секущих плоскостей. Метод вспомогательных секущих сфер.
Частные случаи пересечения поверхностей второго порядка.

 

 

Пересечение линии с поверхностью

В общем случае для графического определения точек пересечения линии с поверхностью (рис.8.28) необходимо выполнить ряд геометрических построений, описываемых следующим алгоритмом:

1. Заключаем линию l в некоторую вспомогательную поверхность Δ;

1. Строим линию m пересечения данной поверхности Ф и вспомогательной поверхности Δ;

2. Определяем искомую точку К пересечения линии l и m (точка может быть не единственная).

В качестве вспомогательной поверхности целесообразно использовать проецирующую цилиндрическую поверхность, направляющей которой должна служить заданная линия, а –прямолинейными образующими – проецирующие прямые.

Пример: Определить точки пересечения прямой линии с поверхностью конуса вращения и определить видимость прямой по отношению к конусу.

Если в качестве вспомогательной секущей плоскости можно выбрать горизонтально проецирующую или фронтально проецирующую плоскости, то в сечении получатся соответственно гипербола (рис.8.29а) или эллипс (рис.8.29б). Построение кривых линий значительно усложняет задачу.

Решение задачи в пространстве Рисунок 8.28. Пересечение линии с поверхностью
а) горизонтально проецирующая плоскостьб) фронтально проецирующая плоскость
Рисунок 8.29 Пересечение прямой линии с конусом

(вспомогательная секущая плоскость- проецирующая плоскость )

 

 

  Решение задачи в пространстве а) модель

Решение задачи на эпюре

б) эпюр

Рисунок 8.30. Пересечение прямой линии с конусом

(вспомогательная секущая плоскость-плоскость общего положения)

Поэтому в качестве вспомогательной секущей плоскости целесообразно выбрать такую плоскость, которая бы включала прямую l и пересекала конус по образующим (рис.8.30). Очевидно, что такая плоскость определяется прямой l и точкой S- вершиной конуса. Пусть основание конуса лежит в  горизонтальной плоскости проекций, тогда линия пересечения вспомогательной секущей плоскости и горизонтальной плоскости проекций ВС пересекает основание конуса в точках D и F. Таким образом в сечении конуса вспомогательной секущей плоскостью получится треугольник DFS. Так как полученный треугольник и прямая l лежат в одной плоскости, точки их пересечения К и Ми есть точки пересечения прямой с конусом.

 

 

Взаимное пересечение поверхностей

Линией пересечения двух поверхностей является множество точек, общих для данных поверхностей. Из этого множества выделяют характерные (опорные, или главные) точки, с которых следует начинать построение этой линии. Они позволяют увидеть, в каких границах можно изменять положение вспомогательных секущих поверхностей для определения остальных точек.

К таким точкам относятся: экстремальные точки- верхняя и нижняя точки относительно той или иной плоскости проекций; точки, расположенные на очерковых образующих некоторых поверхностей точки границы зоны видимости и т.д.

Следует имеет в виду, что линия пересечения двух поверхностей в проекциях всегда располагается в пределах контура наложения проекций двух пересекающихся поверхностей.

Иногда целесообразно воспользоваться преобразованием чертежа, чтобы представить пересекающиеся поверхности (или одну из них) в частном положении.

 Для определения  этих точек часто пользуются вспомогательными секущими поверхностями. Поверхности-посредники пересекают данные поверхности по линиям, которые, в свою очередь, пересекаются в точках линии пересечения данных поверхностей.

Секущие поверхности-посредники выбираются так, чтобы они, пересекаясь с данными поверхностями, давали простые для построения линии, например прямые и окружности.

Из общей схемы построения линии пересечения поверхностей выделяют два основных метода - метод секущих плоскостей и метод секущих сфер.

В общем случае решение задачи по построении линии пересечения двух поверхностей может быть сведено к рассмотренным ранее задачам по определению:

1. Точек пересечения линии с поверхностью;

2. Линии пересечения плоскости и поверхности;

3. Комбинации первой и второй задачи.

 

 

Метод вспомогательных секущих плоскостей.

Вспомогательные секущие плоскости чаще всего выбирают проецирующими и параллельными одной из плоскостей проекций - плоскостями уровня.

Этот способ рекомендуется применять, если сечения заданных поверхностей одной и той же плоскостью являются прямыми линиями или окружностями. Такая возможность существует в трех случаях:

1. Если образующие (окружности) расположены в общих плоскостях уровня;

2. Если в общих плоскостях уровня оказываются прямолинейные образующие линейчатой поверхности и окружности циклической;

3. Линейчатые каркасы заданных поверхностей принадлежат общим плоскостям уровня или пучкам плоскостей общего положения.

Пример 1: Рассмотрим построение линии пересечения треугольной призмы с конусом (рис.8.31) . Пусть ось вращения конуса перпендикулярна плоскости П1, а грани призмы перпендикулярны плоскости П2.

В этом случае призму можно рассматривать, как три плоскости α, β, γ, проходящие через ее грани, а задача сводится к нахождению линий пересечения этих плоскостей с конусом. При этом в соответствии с характерными сечениями конуса известно, что плоскость α пересекает конус по окружности параллельной П1,  β- по гиперболе параллельной П3, а γ- по эллипсу.

На плоскость П2 линии пересечения от всех плоскостей проецируются в прямые, совпадающие со следами плоскостей α, β, и γ.

Для построения проекций этих линий на плоскости П1 и П3 отметим характерные точки на уже имеющейся фронтальной проекции линий пересечения:

 

а) модель

Решение задачи на эпюреб) эпюр
Рисунок 8.31. Пересечение конуса и призмы

Точки 12 и 62 – пересечения плоскости γ с очерком проекции конуса на плоскость П2 (главным меридианом), эти точки определяют положение большой оси эллипса, кроме того точка 12 –проекция точки вершины гиперболы и одновременно принадлежит конусу (лежит на очерке фронтальной проекции конуса) и ребру призмы (линии пересечения плоскостей α и β), а точка 62- проекция точки, одновременно принадлежащей конусу и ребру призмы (линии пересечения плоскостей α и γ); точки 2, 3, 7 и 8 – характерны тем, что их профильные проекции лежат на очерке проекции конуса; 42, 52- точки, лежащие на середине отрезка 1262 (большой оси эллипса) и определяют положение малой оси эллипса; 9,10 – точки  одновременно принадлежащие конусу и ребру призмы (образованному пересечением плоскостей α и β).

Рассмотрим последовательность нахождения  проекций точек 4 и 5. Через фронтальные проекции этих точек проведем вспомогательную секущую плоскость φ. Эта плоскость пересекает конус по параллели p, а грань призмы по прямой линии m, параллельной ребру. На горизонтальной плоскости проекций пересечение p 1 и  m 1 определяют положение точек 41 и  51. Для  точного построения кривых линий пересечения поверхностей обозначенных точек не достаточно. После нахождения проекций всех точек их необходимо соединить с учетом видимости.

Пример 2: Пересечение сферы и цилиндра (рис.8.32).В данном примере вспомогательные плоскости уровня могут быть параллельными плоскостям П2 и П1. В первом случае фронтальные плоскости пересекают сферу по окружности, а цилиндр по прямолинейным образующим.

Одна из таких плоскостей  α пересекается с поверхностями по дуге окружности a и прямой линии b. Точка 1 пересечения   дуги окружности а и прямой b принадлежат искомой кривой.

а) модель Решение задачи на эпюреб) эпюр
Рисунок 8.32. Пересечение полусферы и эллиптического цилиндра

 С помощью вспомогательной секущей плоскости b (плоскости главного фронтального меридиана полусферы) найдены точки 2 и 3, как точки пересечения главного фронтального меридиана полусферы - дуги окружности с с линиями d и g. Плоскость g - плоскость главного фронтального меридиана цилиндра, пересекает полусферу по дуге окружности - k которая в свою очередь пересекаясь с фронтальным меридианом цилиндра l и m определяет положение точек 4 и 5. Аналогично, с помощью плоскости j найдены точки 6 и 7.

 Точка 8 найдена с помощью фронтально проецирующей плоскости w, параллельной горизонтальной плоскости проекций, которая пересекает полусферу по окружности - экватору h, а цилиндр по окружности основания s.

Характерными точками, в данном случае, являются точки 1- 5 и 8,  лежащие на очерках проекций поверхностей. Кроме того, точки 1 и 8 определяют границу зоны видимости кривой на  плоскость П1, а точки 4 и 5 – границу зоны видимости на плоскость П2.

 

 

Метод вспомогательных секущих сфер.

При определении линии пересечения двух поверхностей вращения, при их особом взаимном расположении, не всегда рационально применять вспомогательные секущие плоскости. В некоторых случаях применяют метод вспомогательных секущих сфер – концентрических или эксцентрических.

Концентрические сферические посредники применяются при определении линии пересечения двух поверхностей вращения с пересекающимися осями. 

Каждая из этих поверхностей имеет семейство окружностей, являющихся линиями сечения их концентрическими сферами. Применению метода концентрических сфер должно предшествовать такое преобразование чертежа в результате которого оси обеих поверхностей должны быть расположены параллельно одной и той же плоскости проекций (рис.8.33) или одна из осей становиться проецирующей прямой, а вторая - линией уровня (рис.34).

   Решение задачи в пространствеа) модель Решение задачи на эпюреб) эпюр
Рисунок 8.33. Пересечение поверхностей вращения, оси которых параллельны фронтальной плоскости проекций.

Оси поверхностей G и Q параллельны фронтальной плоскости проекций и пересекаются в точки А (рис.8.33). Эта точка принимается за центр всех вспомогательных концентрических сфер. Каждая из концентрических сфер пересекает поверхности по окружностям - параллелям (а, b, c, d, n), фронтальные проекции которых являются прямыми линиями (а2, b2, c2, d2, n2). Проекции точек 12, 22, 32, 42, 52 и 62 пересечения проекций параллелей принадлежат проекции искомой линии пересечения поверхностей. Пересечение главных меридианов определяет крайние точки 7 и 8.

Решение задачи на эпюре

Для точного построения линии пересечения поверхностей необходимо найти точки 9 и 10, которые определяют границу зоны видимости линии пересечения поверхностей на горизонтальной проекции. Для этой цели использовалась вспомогательная секущая плоскость b, которая пересекает поверхность Q по линии m, а поверхность G по образующим, горизонтальные проекции которых пересекаясь определяют положение искомых точек. 

Соединив найденные точки 1...10 с учетом видимости получим линию пересечения поверхностей.

Вторым примером использования в качестве вспомогательных поверхностей посредников концентрических сфер рассмотрим при определении линии пересечения поверхностей предложенных на рисунке 8.34. Оси поверхностей вращения G и Q пересекаются в точки А , при этом ось поверхности Q - фронтально проецирующая прямая, а ось поверхности G - горизонталь. Точка А принимается за центр всех вспомогательных концентрических сфер.

Точки 1 и 2 линии пересечения построены с помощью сферы радиуса R. Эта сфера пересекает поверхность Q  по окружности а, а поверхность G по окружности в, которая показана только на горизонтальной проекции. Пересечение горизонтальных проекций окружностей а1 и в1 определяют проекции 11 и 21 точек линии пересечения. Их фронтальные проекции 12 и 22 построены на а2 пересечении с линиями связи.

Аналогично найдены точки 3 и 4.

Для нахождения точек 5 и 6 определяющих границу зоны видимости на горизонтальной проекции использовалась вспомогательная секущая плоскость b, которая пересекает поверхность Q по окружность n, а коническую поверхность G по треугольнику определяющему ее очерк на горизонтальной проекции.

Точки 7 и 8 находятся на границе зоны видимости фронтальной проекции, для их нахождения используется вспомогательная секущая плоскость g

Соединив найденные точки 1...8 с учетом видимости получим линию пересечения поверхностей G и Q.

Решение задачи на эпюреРисунок 8.34. Пересечение 
поверхностей вращения, ось одной - горизонтально проецирующая прямая, а второй - горизонталь

Эксцентрические сферические посредники применяются при определении точек линии пересечения поверхностей вращения с поверхностью несущей на себе непрерывное множество окружностей. Обе поверхности должны иметь общую плоскость симметрии. Вспомогательные эксцентрические сферы пересекаются с данными поверхностями по окружностям.

   Решение задачи в пространствеа) модель Решение задачи на эпюреб) эпюр
Рисунок 8.35. Пересечение конуса и сферы

Определения линии пересечения конуса  и сферы  применение эксцентричных сфер, как поверхностей - посредников. Центры сфер - точки  расположены на оси конуса. Сфера  пересекает конус и сферу по окружностям , которые пересекаются в  двух точках, принадлежащих искомой линии пересечения (рис.8.35а). 

Верхняя и нижняя точки линии пересечения найдены с помощью вспомогательной секущей плоскости - плоскости  главного фронтального меридиана, пересекающая конус и сферу по треугольнику и окружности, являющимися очерками поверхностей на фронтальной плоскости проекций. 

Точки определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости  - горизонтальной плоскости уровня, пересекающей сферу по экватору - окружности являющейся очерком шара на горизонтальной проекции, а конус по окружности - параллели.

Найденные с помощью вспомогательных поверхностей посредников точки определяют линию пересечения конуса и шара.

Рассмотрим на примере определения линии пересечения конуса Q и сферы G (рис.8.35б) применение эксцентричных сфер, как поверхностей - посредников. Центры сфер - точки А1, А2 и А3 расположены на оси конуса. Сфера радиуса R1 с центром в точке А1 пересекает конус и сферу по окружностям аи в, которые пересекаются в точках 1 и 2, принадлежащих искомой линии пересечения. С помощью сферы R2 с центром А2 исферы R3 с центром А3 определено положение точек 3, 4 и 5,6 соответственно. Точки 7 и 8 найдены с помощью вспомогательной секущей плоскости a (плоскости фронтального меридиана), пересекающая конус и сферу по главном фронтальном меридианам k и l. Точки 9 и 10, определяющие границу зоны видимости линии пересечения на горизонтальной плоскости проекций, найдены с помощью вспомогательной секущей плоскости  b (горизонтальной плоскости уровня), пересекающей сферу G по экватору s, а конус Q по окружности p. Найденные с помощью вспомогательных поверхностей посредников точки 1...10 определяют линию пересечения конуса и шара.

 

 

Частные случаи пересечения поверхностей второго порядка

Поверхностью второго порядка называется множество точек пространства, декартовы координаты, которых удовлетворяют алгебраическому уравнению второй степени.

Две поверхности второго порядка в общем случае пересекаются по пространственной линии четвертого порядка, которую называют биквадратной кривой.

В некоторых случаях биквадратная кривая распадается на две плоские кривые второго порядка, причем одна из них может быть мнимой.

Опуская доказательства, приведем некоторые теоремы и примеры, иллюстрирующие их применение.

Теорема 1. Если две поверхности второго порядка пересекаются по одной плоской кривой, то существует и другая плоская кривая, по которой они пересекаются.

Рассмотрим пример, к которому приложима теорема.

Фронтальные проекции q2 сферы Q и W2 эллиптического цилиндра W, имеющих общую окружность m(m2) с центром О(О2) (рис.8.36).

  а) модельб) эпюр
Рисунок 8.36. Пересечение сферы и эллиптического цилиндра

Плоскость σ, определяемая центром сферы С и осью i цилиндра, является плоскостью симметрии заданных поверхностей, и параллельна фронтальной плоскости проекций.

Общая окружность радиуса r – это одна из плоских кривых второго порядка распавшейся линии пересечения. Остается построить вторую кривую, плоскость α которой должна быть в условиях данного примера перпендикулярна плоскости симметрии σ, а следовательно и П2. Вторая линия пересечения (окружность) проецируется на П2 в виде отрезка прямой n2. Для ее построения следует воспользоваться точками А2 и В2, принадлежащими очеркам заданных поверхностей.

Теорема 2.(о двойном касании). Если две поверхности второго порядка имеют касание в двух точках А и В, то линия их пересечения распадается на две плоские кривые второго порядка, плоскость которых проходит через отрезок АВ, соединяющий точки касания.

  а) модельб) эпюр
Рисунок 8.37 Пересечение сферы и эллиптического цилиндра 
имеющих две точки касания

Например, по двум окружностям m и n пересекается сфера S и эллиптический цилиндр Q (рис.8.37).  Точки касания и касательные плоскости обозначены соответственно через А, В, α, β. Окружности, на которые распалась линия пересечения поверхностей, расположены во фронтально- проецирующих плоскостях γ и δ.

Теорема 3. (теорема Г. Монжа). Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки линий касания.

  а) модельб) эпюр

Рисунок 8.38. Пересечение конуса и цилиндра имеющих общую вписанную сферу

В соответствии с этой теоремой линия пересечения конуса Σ и цилиндра Q (рис.8.38), описанных около сферы W, будут плоскими кривыми – эллипсами (расположенными в плоскостях a и b), фронтальные проекции которых изображаются прямыми А2В2 и С2Д2,

Теорема Монжа находит эффективное применение при конструировании трубопроводов.

Теорема 4. Если две поверхности второго порядка имеют общую плоскость симметрии, то линия их пересечения проецируется на эту плоскость в виде кривой второго порядка.

а) модельб) эпюр
Рисунок 8.39. Пересечение сферы и цилиндра 

Плоскость симметрии определена осью симметрии цилиндра Q и центром сферы S (рис.8.39). Плоскости принадлежат и симметричные сами себе точки A, B, C иD линий пересечения. Проекция же линий на фронтальную плоскость имеет форму параболы m2 и аналитически описывается формулой параболы.
 

Начертательная геометрия курс лекций