Курс инженерной графики и начертательной геометрии технического университета

Начертательная геометрия
ЕСКД
Сопряжение
Примеры
Черчение
Оформление чертежей
Выполнение чертежей
Практикум
Инженерная графика
Лекции
Карта сайта
На главную

Начертательная геометрия

Построение лекальных кривых

Лекальные кривые имеют большое применение в технике. Рассмотрим наиболее часто встречающиеся способы построения плоских кривых. Эти кривые обычно обводят с помощью лекал, поэтому они получили название лекальных кривых.

Эллипс

Эллипсом называется плоская замкнутая кривая – геометрическое место точек К, сумма расстояний от которых до заданных точек F1 и F2 равняется длине заданного отрезка АВ, проведенного через точки F1 и F2, так чтобы отрезок АF1, равнялся отрезку F2В (рисунок 5.1). Отрезок АВ называется большой осью эллипса, а точки F1 и F2 – фокусами эллипса. Отрезок СД, проведенный через середину большой оси – точку О – центр эллипса перпендикулярно к ней, называется малой осью эллипса. Биссектриса смежного с ним угла F1K F2 называется касательной эллипса. Нормаль перпендикулярна касательной.

Рисунок 5.1

Построение эллипса по двум заданным его осям АВ и СД. Из центра О (рисунок 5.2) эллипса проводят две окружности, диаметры которых равны большой и малой осям элипса. Из центра эллипса проводят пучок лучей до пересечения с окружностями в точках 1, 2, 3, 4… и 11, 21, 31, 41… . Из точек 1, 2, 3, 4… проводят прямые, параллельные малой оси эллипса, а из точек 11, 21, 31, 41… - параллельные большой оси. Пересечение соответствующих пар этих прямых определяет ряд точек, соединяя которые плавной кривой получают эллипс.

Болтовое соединение представляет собой узел, состоящий из болта, гайки,шайбы и скрепляемых деталей 1 и 2

Для нахождения фокусов F1 и F2 надо из точки С как из центра, провести дугу радиусом R = АО, она пересечет ось АВ в точках Г1 и Г2 – фокусах.

Рисунок 5.2

Изображение окружностей в аксонометрии

При выполнении прямоугольных аксонометрических проекций предметов, имеющих поверхности вращения, приходится строить проекции окружностей – эллипсы. Расположение осей эллипсов, изображение окружностей в изометрии показано на рис. 33, а, а в диметрии – на рис. 33, б, здесь же даны величины больших осей (Б О) и малых осей (М О) по сравнению с натуральным  диаметром (D) изображаемой окружности. На каждой оси приведены показатели искажения.

Рис. 33. Изображение окружностей:

а – в изометрии; б – в диметрии


На главную