Инженерная графика проекции

Графика
Курс лекций для студентов
художественно-графических факультетов
Геометрическое черчение
Начертательная геометрия
Конспект лекций
Практикум решения задач
начертательной геометрии
Машиностроительное черчение
Эскизирование деталей
Правила нанесения размеров
Практическое занятие
Решение метрических задач
Выполнение чертежей
Инженерная графика
База графических примеров
Теория механизмов и машин
Теоретическая механика
Основы технической механики
Сборник задач по математике
Примеры решения задач курсового расчета
Вычислить интеграл
Векторная алгебра и аналитическая геометрия
Тройные и двойные интегралы
Линейная алгебра
Ряд Фурье для четных и нечетных функций
Типовой расчет (задания из Кузнецова)
Вычисление площадей в декартовых координатах
Математический анализ
Информатика
Компьютерные сети
Выделенный канал
Средства анализа и управления сетями
Кабельная система
Базовые технологии локальных сетей
Сетевой уровень
Основы вычислительных систем
Сетевая технология
Мобильный Internet
Руководства по техническому обслуживанию ПК
Руководство по глобальной компьютерной сети
Сборник задач по физике
Физика решение задач
Ядерная физика
Законы теплового излучения
Решение задач по электротехнике
использование MATLAB
Язык программирования MATLAB
Расчет электрических цепей
Моделирование цепей переменного тока
Лекции ТКМ
Электротехнические материалы
Атомная энергетика
Ядерные реакторы
Основы ядерной физики
Использование атомной энергетики
для решения проблем дефицита пресной воды
Проектирование и строительство
атомных энергоблоков
Юбилей Атомной энергетики
Атомные станции с реакторами РБМК 1000
АЭС с реакторами ВВЭР
Реаторы третьего поколения ВВЭР-1500
АЭС с реакторами БН-600
Оборудование атомных станций
Отказы оборудования
Ядерное оружие
Ядерная физика

Ядерные реакторы технология

 

Позиционные задачи на пересечение прямых и плоскостей При моделировании важно знать взаимное положение геометрических фигур, которые могут пересекаться (что, часто, не должно быть), касаться и т.д. Ортогональный чертеж не всегда дает ответ на эти вопросы. Однако знания свойств параллельного проецирования, позволяет сразу решить некоторые позиционные задачи

Частные случаи пересечения плоскостей

Пересечение прямой с координатными осями

Многогранники как поверхности и многогранники как тела Задание многогранников Геометрическими элементами многогранников являются вершины, ребра, грани и для многогранников-тел - пространство внутри многогранника. Все элементы можно представить в виде структурированного массива точек.

Пересечение прямой с поверхностью многогранника

Многогранники, как поверхности, пересекаются по линии и многогранники, как тела, пересекаются по трехмерным телам. Используя теоретико-множественные операции, с многогранниками как с телами (многогранники могут быть как тела с нулевой толщиной стенок-граней), можно выполнять операции объединения, вычитания и пересечения

Плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой плоскости. Таким образом, чтобы построить плоскость, перпендикулярную заданной плоскости, необходимо сначала построить прямую, перпендикулярную данной плоскости, и через эту прямую провести искомую плоскость.

Линией наибольшего ската (уклона) называется прямая плоскости, перпендикулярная к горизонтальному следу или горизонталям этой плоскости

Методы преобразования проекций. Вращение Позиционные и метрические задачи решаются проще, если геометрические фигуры занимают по отношению к плоскостям проекций частные положения (перпендикулярные или параллельные). Такое положения фигур можно достичь вращением их вокруг проецирующих, линий уровня или координатных осей

Вращение прямой общего положения вокруг оси, перпендикулярной плоскости проекций до положения уровня и далее до проецирующего положения осуществляется

Последовательное вращение прямой общего положения вокруг двух осей, перпендикулярных плоскостям проекций до проецирующего положения можно осуществить сначала поворотом вокруг горизонтально-проецирующей оси до положения уровня

Вращение плоскости Для плоской фигуры важным является вращение ее до проецирующего положения и до положение уровня. Причем в проецирующее положение плоскость переводится одним вращением, в положение уровня - двойным вращением.

Определить наименее удаленную вершину многогранника от заданной плоскости. Данная постановка интерпретирует транспортную задачу нахождения оптимального плана расстановки судов на линии или то же самое задачу линейного программирования, в которой наилучшее решение определяется в ближайшей или наиболее удаленной вершине многогранника (области ограничений) минимизирующей функции (плоскости). Пусть плоскость задана следами (так чаще представляют плоскость в задачах линейного программирования).

Способ замены плоскостей проекции Суть метода состоит в задании новых изображений геометрических фигур удовлетворяющих определенным свойствам. Это может быть какой-либо дополнительный вид фигуры, натуральная величина какой-либо ее грани (например, для построения разверток) или других задач, типа определения угла между гранями, расстояние между двумя объектами и т.д.

Проецирование прямой линии в точку Пример. Задан отрезок прямой, занимающий положение горизонтали. Требуется подобрать направление проецирования и новую плоскость проекций на которую данный отрезок проецировался бы в точку.

Преобразование плоскости общего положения в проецирующую плоскость Данная задача может быть решена из определения: плоскость перпендикулярна другой плоскости, если она проходит через перпендикуляр к этой плоскости. Таким образом, если в заданной плоскости взять какую-либо прямую и последовательно преобразовать ее точку, то и плоскость в которой она лежит должна стать проецирующей (проецироваться-вырождаться в прямую) Инженерная графика

Опреление натуральную величину плоского треугольника АВС общего положения Плоскость треугольника АВС является плоскостью общего положения, поэтому требуется две замены 1) преобразование в проецирующее положение и вторая замена в положение уровня. Данные преобразования по отдельности были выполнены выше и объединяя их получим схему преобразования

Решение метрических задач способом замены плоскостей проекций

Определить расстояние от т. М до плоскости АВС

На 8.8 построена линия пересечения прямой 30-гранной призмы с плоскостью общего положения

На главную