.
Начертательная геометрия Геометрическое черчение Инженерная графика Интегралы Математический анализ Матрицы Производные Векторная алгебра

 

1.1. Способы построения и классификация

 

Система обработки данных (СОД) – совокупность технических средств и программного обеспечения, предназначенная для информационного обслуживания пользователей и технических объектов. В состав технических средств входит оборудование для ввода, хранения, преобразования и вывода данных, втом числе ЭВМ, устройства сопряжения ЭВМ с объектами, аппаратура передачи данных, и линии связь. Программное обеспечение (программные средства) – совокупность программ, реализующих возложенные на систему функции. Функции СОД состоят в выполнении требуемых актов обработки данных: ввода, хранения, преобразования и вывода. Примерами СОД являются вычислительные системы для решения научных, инженерно-технических, планово-экономических и учетно-статистических задач, автоматизированные системы управления предприятиями и отраслями народного хозяйства, системы автоматизированного и автоматического управления технологическим оборудованием и техническими объектами, информационно-измерительные системы и др.

Основа СОД – это технические средства, так как их производительностью и надежностью в наибольшей степени определяется эффективность СОД.

Одномашинные СОД. Исторически первыми и до сих пор широко распространенными являются одномашинные СОД, построенные на базе единственной ЭВМ с традиционной однопроцессорной структурой. К настоящему времени накоплен значительный опыт проектирования к эксплуатации таких СОД, и поэтому создание, их, включая разработку программного обеспечения, не вызывает принципиальных трудностей. Однако производительность и надежность существующего парка ЭВМ оказывается удовлетворительной лишь для ограниченного применения, когда требуется относительно невысокая (до нескольких миллионов операций в секунду) производительность и допускается простой системы в течение нескольких часов из-за отказов оборудования. Повышение производительности и надежности ЭВМ обеспечивается в основном за счет совершенствования элементно-технологической базы. Достигнутое к настоящему времени быстродействие электронных схем приближается к физическому пределу, и производительность ЭВМ на уровне десяти миллионов операций в секунду можно рассматривать как максимальную возможную. При любом уровне технологии нельзя обеспечить абсолютную надежность элементной базы, и поэтому нельзя для одномашинных СОД исключить возможность потери работоспособности. Таким образом, одномашинные СОД лишь частично удовлетворяют потребность в автоматизации обработки данных.

 

а)

 

б)

 
 


Рис. 1.1. Многомашинный вычислительный комплекс с косвенной (а) и прямой (б) связью между ЭВМ

 

 

 

Вычислительные комплексы. Начиная с 60-х годов для повышения надежности и производительности СОД, несколько ЭВМ связывались между собой, образуя многомашинный вычислительный комплекс.

В ранних многомашинных комплексах связь между ЭВМ обеспечивалась через общие внешние запоминающие устройства – накопители на магнитных дисках (НМД) или магнитных лентах (НМЛ) (рис 1,1, а), т.е. за счет доступа к общим наборам данных. Такая связь называется косвенной и оказывается эффективной только в том случае, когда ЭВМ взаимодействуют достаточно редко, например, при отказе одной из ЭВМ или в моменты начала и окончания обработки данных. Более оперативное взаимодействие ЭВМ достигается за счет прямой связи через адаптер, обеспечивающий обмен данными между каналами ввода – вывода ЧКВВ) двух ЭВМ (рис. 1.1, б) и передачу сигналов прерывания. За счет этого создаются хорошие условия для координации процессов обработки данных и повышается оперативность обмена данными, что позволяет вести параллельно процессы обработки и существенно увеличивать производительность СОД. В настоящее время многомашинные вычислительные комплексы широко используются для повышения надежности и производительности СОД.

В многомашинных вычислительных комплексах взаимодействие процессов обработки данных обеспечивается только за счет обмена сигналами прерывания и передачи данных через адаптеры канал – канал или общие внешние запоминающие устройства. Лучшие условия для взаимодействия процессов – когда все процессоры имеют доступ ко всему объему данных, хранимых в оперативных запоминающих устройствах (ОЗУ), и могут взаимодействовать со всеми периферийными устройствами комплекса. Вычислительный комплекс, содержащий несколько процессоров с общей оперативной памятью и периферийными устройствами, называется многопроцессорным. Принцип построения таких комплексов иллюстрируется рис. 1.2. Процессоры, модули оперативной памяти (МП) и каналы ввода–вывода, к которым подключены периферийные устройства (ПУ), объединяются в единый комплекс с помощью средств коммутации, обеспечивающих доступ каждого процессора к любому модулю оперативной памяти и каналу ввода–вывода, а также возможность передачи данных между последними. В многопроцессорном комплексе отказы отдельных устройств влияют на работоспособность СОД в меньшей степени, чем в многомашинном, т.е. многопроцессорные комплексы обладают большей устойчивостью к отказам. Каждый процессор имеет непосредственный доступ ко всем данным, хранимым в общей оперативной памяти, и к периферийным устройствам, что позволяет параллельно обрабатывать не только независимые задачи, на и блоки одной задачи.

Рис. 1.2. Многопроцессорный вычислительный комплекс

 

Многомашинные и многопроцессорные вычислительные комплексы рассматриваются как базовые средства для создания СОД различного назначения. Поэтому в состав вычислительного комплекса принято включать только технические средства и общесистемное (базовое), но не прикладное программное обеспечение, связанное с конкретной областью применения комплекса. Таким образом, вычислительный комплекс совокупность технических средств, включающих в себя несколько ЭВМ или процессоров, и общесистемного (базового) программного обеспечении.

Вычислительные системы. СОД, настроенная на решение задач, конкретной области применения, называется вычислительной системой. Вычислительная система включает в себя технические средства и программное обеспечение, ориентированные на решение определенной совокупности задач. Существует два способа ориентации. Во-первых, вычислительная система может строиться на основе ЭВМ или вычислительного комплекса общего применения и ориентация системы обеспечивается за счет программных средств – прикладных программ и, возможно, операционной системы. Во-вторых, ориентация на заданный класс задач может достигаться за счет использования специализированных ЭВМ и вычислительных комплексов. В этом случае удается при умеренных затратах оборудования добиться высокой производительности. Специализированные вычислительные системы наиболее широко используются при решении задач векторной и матричной, алгебры, а также связанных с интегрированием дифференциальных уравнений, обработкой изображений, распознаванием образов и т. д.

Вычислительные системы, построенные на основе специализированных комплексов, начали интенсивно разрабатываться с конца 60-х годов. В таких системах использовалась процессоры со специализированными системами команд, конфигурация комплексов жестко ориентировалась на конкретный класс задач. В последнее десятилетие начались исследования и разработки адаптивных вычислительных систем, гибко приспосабливающихся к решаемым задачам. Адаптация вычислительной системы с целью приспособления ее к структуре реализуемого алгоритма достигается за счет изменения конфигурации системы. При этом соединения между процессорами, а также модулями памяти и периферийными устройствами устанавливаются динамически в соответствии с потребностями задач, обрабатываемых системой в текущий момент времени. В связи с этим адаптивные вычислительные системы иначе называются системами с динамической структурой. За счет адаптации достигается высокая производительность в широком классе задач и обеспечивается устойчивость системы к отказам. Поэтому адаптивные системы рассматриваются как одно из перспективных направлений развития систем обработки данных.

Системы телеобработки. Уже первоначальное применение СОД для управления производством, транспортом и материально-техническим снабжением показало, что эффективность систем можно значительно повысить, если обеспечить ввод данных в систему непосредственно с мест их появления и выдачу результатов обработки к местам их использования. Для этого необходимо связать СОД и рабочие места пользователей с помощью каналов связи. Системы, предназначенные для обработки данных, передаваемых по каналам связи, называются системами телеобработки данных.

Состав технических средств системы телеобработки данных укрупненно представлен на рис. 1.3. Пользователи (абоненты) взаимодействуют с системой посредством терминалов (абонентских пунктов), подключаемых через каналы связи к средствам обработки данных – ЭВМ или вычислительному комплексу. Данные передаются по каналам связи в форме сообщений – блоков данных, несущих в себе кроме собственно данных служебную информацию, необходимую для управления процессами передачи и защиты данных от искажений. Программное обеспечение систем телеобработки содержит специальные средства, необходимые для управления техническими средствами, установления связи между ЭВМ и абонентами, передачи данных между ними и организации взаимодействия пользователей с программами обработки данных.

Телеобработка данных значительно повышает оперативность информационного обслуживания пользователей и наряду с этим позволяет создавать крупномасштабные системы, обеспечивающие доступ широкого круга пользователей к данным и процедурам их обработки.

Вычислительные сети. С ростом масштабов применения электронной вычислительной техники в научных исследованиях, проектно-конструкторских работах, управлении производством и транспортом и прочих областях стала очевидна необходимость объединения СОД, обслуживающих отдельные предприятия и коллективы. Объединение разрозненных СОД обеспечивает доступ к данным и процедурам их обработки для всех пользователей, связанных общей сферой деятельности. Так, экспериментальные данные, полученные группой исследователей, могут использоваться при проектно-конструкторских работах, результаты проектирования – при технологической подготовке производства, результаты испытаний и эксплуатации изделий – для совершенствования конструкций и технологии производства и т. д. Чтобы объединить территориально разрозненные СОД в единый комплекс, необходимо, во-первых, обеспечить возможность обмена данными между СОД, связав соответствующие ЭВМ в вычислительные комплексы каналами передачи данных, и, во-вторых, оснастить системы программными средствами, позволяющими пользователям одной системы обращаться к информационным, программным и техническим ресурсам других систем.

Рис. 1.3. Система телеобработки данных

Рис. 1.4. Вычислительная сеть

 

В конце 60-х годов был предложен способ построения вычислительных сетей, объединяющих ЭВМ (вычислительные комплексы) с помощью базовой сети передачи данных. Структура вычислительной сети в общих чертах представлена на рис. 1.4. Ядром является базовая сеть передачи данных (СПД), которая состоит из каналов и узлов связи (УС). Узлы связи принимают данные и передают их в направлении, обеспечивающем доставку данных абоненту. ЭВМ подключаются к узлам базовой сети передачи данных, чем обеспечивается возможность обмена данными между любыми парами ЭВМ. Совокупность ЭВМ, объединенных сетью передачи данных, образует сеть ЭВМ. К ЭВМ непосредственно или с помощью каналов связи подключаются терминалы, через которые пользователи взаимодействуют с сетью. Совокупность терминалов и средств связи, используемых для подключения терминалов к ЭВМ, образует терминальную сеть. Таким образом, вычислительная сеть представляет собой композицию базовой сети передачи данных, сети ЭВМ и терминальной сети. Такая вычислительная сеть называется глобальной или распределенной (в дальнейшем – «вычислительная сеть», в отличие от локальной). Вычислительные сети используются для объединения ЭВМ, находящихся на значительном расстоянии друг от друга в пределах региона, страны или континента.

В вычислительной сети все ЭВМ оснащаются специальными программными средствами для сетевой обработки данных. На сетевое программное обеспечение возлагается широкий комплекс функций: управление аппаратурой сопряжения и каналами связи: установление соединений между взаимодействующими процессами и ЭВМ; управление процессами передачи данных; ввод и выполнение заданий от удаленных терминалов; доступ программ к наборам данных, размещенных в удаленных ЭВМ, и др. К сетевому программному обеспечению предъявляются следующие требования: сохранение работоспособности сети при изменении ее структуры вследствие выхода из строя отдельных ЭВМ, каналов и узлов связи, а также возможность работы ЭВМ с терминалами различных типов и взаимодействия разнотипных ЭВМ. Функции, возлагаемые на сетевое программное обеспечение, отличаются высоким уровнем сложности и реализуются с использованием специально разработанных методов управления процессами пере дачи и обработки данных.

Вычислительные сети – наиболее эффективный способ построения крупномасштабных СОД. Использование вычислительных сетей позволяет автоматизировать управление отраслями производства, транспортом и материально-техническим снабжением в масштабе крупных регионов и страны в целом. За счет концентрации в сети больших объемов данных и общедоступности средств обработки значительно улучшается информационное обслуживание научных исследований, повышается производительность труда инженерно-технических работников и качество административно-управленческой деятельности. Кроме того, объединение ЭВМ в вычислительные сети позволяет существенно повысить эффективность их использования. Как показывает практика, стоимость обработки данных в вычислительных сетях, по крайней мере, в полтора раза меньше, чем при использовании автономных ЭВМ.

Локальные вычислительные сети. К концу 70-х годов в сфере обработки данных широкое распространение наряду с ЭВМ общего назначения получили мини и микро-ЭВМ и начали применяться персональные ЭВМ. При этом для обработки данных в рамках одного предприятия или его подразделения использовалось большое число ЭВМ, каждая из которых обслуживала небольшую группу пользователей, а микро-ЭВМ и персональные ЭВМ – отдельных пользователей. В то же время коллективный характер труда требовал оперативного обмена данными между пользователями, т. е. объединения ЭВМ в единыйкомплекс. В конце 70-х годов разработан эффективный способ объединения ЭВМ, расположенных на незначительном расстоянии друг от друга – в пределах одного здания или группы соседних зданий, с помощью моноканала, (последовательного интерфейса) – локальные вычислительные сети.

Локальная вычислительная сеть (ЛВС) – совокупность близкорасположенных ЭВМ, которые связаны последовательными интерфейсами и оснащены программными средствами, обеспечивающими информационное взаимодействие между процессами в разных ЭВМ. Типичная структура ЛВС изображена на рис. 1.5. Сопрягаются ЭВМ с помощью моноканала – единого для всех ЭВМ сети канала передачи данных. В моноканале наиболее широко используются скрученная пара проводов, коаксиальный кабель или волоконно-оптическая линия. Длина моноканала не превышает обычно нескольких сотен метров. При этом пропускная способность моноканала составляет 1010–1013 бит/с, что достаточно для обеспечения информационной связи между десятками ЭВМ. ЭВМ сопрягаются с моноканалом с помощью сетевых адаптеров (СА), иначе контроллеров, реализующих операции ввода – вывода данных через моноканал. Наличие в сети единственного канала для обмена данными между ЭВМ существенно упрощает процедуры установления соединений и обмена данными между ЭВМ. Поэтому сетевое программное обеспечение ЭВМ оказывается более простым, чем в вычислительных сетях, содержащих сеть передачи данных, и легко встраивается даже в микро-ЭВМ. Вследствие этого локальные вычислительные сети оказываются эффективным средством построения сложных СОД на основе микро- и мини-ЭВМ.

Рис. 1.5. Локальная вычислительная сеть Терминалы пользователей

 

Локальные вычислительные сети получают широкое применение в системах автоматизации проектирования и технологической подготовки производства, системах управления производством, транспортом, снабжением и сбытом (учрежденческих системах), а также и системах автоматического управления технологическим оборудованием, создаваемых на основе микро- и мини-ЭВМ, в частности в гибких производственных системах.

Классификация СОД. Классифицируются СОД в зависимости от способа построения (рис. 1.6). СОД, построенные на основе отдельных ЭВМ, вычислительных комплексов и систем, образуют класс сосредоточенных (централизованных) систем, в которых вся обработка реализуется ЭВМ, вычислительным комплексом или специализированной системой. Системы телеобработки и вычислительные сети относятся к классу распределенных систем, в которых процессы обработки данных рассредоточены по многим компонентам. При этом системы телеобработки считаются распре деленными в некоторой степени условно, поскольку основные функции обработки данных здесь реализуются централизованно – в одной ЭВМ или вычислительном комплексе.

 Существенное влияние на организацию СОД оказывают технические возможности средств, используемых для сопряжения (комплексирования) ЭВМ. Основным элементом сопряжения является интерфейс, определяющий число линий для передачи сигналов и данных и способ (алгоритм) передачи информации 110 линиям. Все интерфейсы, используемые в вычислительной технике и связи, разделяются на три класса: параллельные, последовательные и связные (рис. 1.7). Параллельный интерфейс состоит из большого числа линий, данные по которым передаются в параллельном коде – обычно в виде 8 – 128-разрядных слов. Параллельные интерфейсы имеют большую пропускную способность, как правило, 1010–1014 бит/с. Столь большие скорости передачи данных обеспечиваются за счет ограниченной длины интерфейса, которая обычно составляет от нескольких метров до десятков метров и в редких случаях достигает сотни. Последовательный интерфейс состоит, как правило, из одной линия, данные по которой передаются в последовательной ходе. Пропускная способность последовательных интерфейсов обычно составляет 105–1011 бит/с при длине линии от десятков метров до километра. Связные интерфейсы содержат каналы связи, работа которых обеспечивается аппаратурой передачи данных, повышающей (в основном с помощью физических методов) достоверность передачи. Связные интерфейсы обеспечивают передачу данных на любые расстояния, однако с небольшой скоростью – в пределах от 103 до 1012 бит/с. Применение связных интерфейсов экономически оправдывается на расстояниях, не меньших километра.

 

Рис. 1.6. Классификация СОД

 

 

Рис. 1.7. Характеристики интерфейсов

 

В сосредоточенных системах применяются в основном параллельные интерфейсы, используемые для сопряжения устройств и построения многомашинных и многопроцессорных комплексов, и только в отдельных случаях, чаще для подключения периферийных устройств, применяются последовательные интерфейсы. Параллельные интерфейсы обеспечивают передачу сигналов прерывания, отдельных слов и блоков данных между сопрягаемыми ЭВМ и устройствами. В распределенных системах из-за значительности расстояний между компонентами применяются последовательные и связные интерфейсы, которые исключают возможность передачи сигналов прерывания между сопрягаемыми устройствами и требуют представления данных в виде сообщений, передаваемых с помощью операций ввода – вывода. Различие способов предъявления данных в параллельных, последовательных и связных интерфейсах и в пропускной способности интерфейсов существенно влияет на организацию обработки данных и, следовательно, программного обеспечения СОД.

На главную