Электротехнические материалы - курс лекций

Ядерные реакторы на быстрых нейтронах
География размещения БН
Проект БРЕСТ-ОД-300
Проект БРЕСТ-1200
Реактор БР-5 (10), г.Обнинск
Реактор БОР-60, г. Димитровград
Реактор БН-350, г. Шевченко
Реактор БН-600
Реактор БН-800
Реактор БН-1200
ВВЭР
(Водо-Водяной Энергетический Реактор)
АЭС с ВВЭР-440
ВВЭР-1200
ВВЭР-1000
Реактор Большой Мощности Канальный (РБМК)
РБМК-1000 история создания
Устройство реактора РБМК-1000
Концепции безопасности реакторов РБМК
Тепловыделяющая сборка
Атомные станции
Белоярская АЭС
Ленинградская АЭС
Ленинградская АЭС-2
Белорусская АЭС
Нововоронежская АЭС
Нововоронежская АЭС-2
Ростовская АЭС
Смоленская атомная станция САЭС
Месторасположение Смоленской АЭС
История строительства
Деятельность
Экологическая политика
Экологический контроль
Атомные надводные корабли
Суда с ядерными энергетическими установками в России
Обзор судов с ядерной энергетической установкой
Атомная установка на авианосце
Атомный авианосец проекта «Шторм»
Тяжёлые атомные ракетные крейсеры проекта «Орлан»
История создания крейсеров проекта «Орлан»
Вооружение крейсеров проекта «Орлан»
Атомные ледоколы
РИТМ-200 реактор для атомного ледокола
Судовая ядерная ППУ ледокола
Реактор ледокола
Корпус реактора
Система компенсации давления
Система газоудаления
Второй контур
Атомная подводная лодка
Атомная шестиракетная субмарина «К-19»
Ракетный подводный крейсер стратегического назначения
АПЛ «Наутилус». США.
 

 

Что такое материал, материаловедение, электротехническое материаловедение.  

Материал - это объект обладающий определенным составом, структурой и свойствами, предназначенный для выполнения определенных функций.Материалы могут иметь различное агрегатное состояние: твердое, жидкое, газообразное или плазменное. Функции, которые выполняют материалы - разнообразны. Это может быть обеспечение протекания тока - в проводниковых материалах, сохранение определенной формы при механических нагрузках - в конструкционных материалах, обеспечение непротекания тока, изоляция - в диэлектрических материалах, превращение электрической энергии в тепловую - в резистивных материалах. Обычно материал выполняет несколько функций, например диэлектрик обязательно испытывает какие-то механические нагрузки, а значит является конструкционным материалом.

Материаловедение - наука, занимающаяся изучением состава, структуры, свойств материалов, поведением материалов при различных воздействиях: тепловых, электрических, магнитных и т.д., а также при сочетании этих воздействий. Стихийными материаловедами были еще древние люди, , например, научившиеся делать каменные наконечники или топоры из определенных камней со слоистой структурой. Технический прогресс человечества во многом основан на материаловедении. В свою очередь технический прогресс дает новые возможности, методы, приборы для материаловедения, позволяет создавать новые материалы.

Рассмотрим пример с компьютерной техникой. Первые компьютеры были на вакуумных электронных лампах и имели сравнительно скромные возможности. Размер их был примерно со спортивный зал, размер единичного элемента для хранения и обработки информации составлял несколько сантиметров. После открытия полупроводников размер элемента уменьшился примерно в 10 раз, размеры компьютера уменьшились также примерно в 10 раз. По мере исследования полупроводников их размер уменьшался, пока не произошел качественный скачок после открытия интегральных схем, когда несколько транзисторов соединили в одном элементе. В дальнейшем и этот элемент постоянно уменьшался и в нем соединяли все большее количество транзисторов. В настоящее время элементарный транзистор имеет размер примерно 0.5 мкм, в больших интегральных схемах соединяются тысячи элементов. Предполагается, что в ближайшем будущем будет постепенно осуществляться переход на масштаб 0.2 мкм и 0.18 мкм. Имеются идеи о создании элементов размером в молекулу!

Электротехническое материаловедение - это раздел материаловедения, который занимается материалами для электротехники и энергетики, т.е. материалами, обладающими специфическими свойствами, необходимыми для конструирования, производства и эксплуатации электротехнического оборудования. Ряд материалов традиционны для любого из разделов материаловедения, в первую очередь, это конструкционные материалы. Основные материалы, рассматриваемые здесь специфичны именно для электротехнического раздела материаловедения, это в первую очередь диэлектрические материалы, затем проводниковые материалы, магнитные материалы, материалы для резисторов. В основном эти темы и будут рассматриваться в курсе электротехнического материаловедения. Для успешного освоения курса не требуется особых знаний. Математика в школьном объеме, физика в объеме курса общей физики. Впрочем несколько лекций для освежения необходимых физических понятий все-таки потребуются. 


Роль материалов в современной технике, в частности в энергетике.  

Материалы играют определяющую роль в техническом прогрессе. Выше я рассматривал пример из области вычислительной техники, когда совершенствование материала и технологии изготовления элементов оборудования из него приводит к радикально новым результатам. Можно привести еще примеры из других областей техники.

Например изготовление баллонов для хранения газов под давлением. Вес баллона определяется толщиной стенки  сосуда, который, в свою очередь, определяется механической прочностью материала. Чем менее прочный материал, тем тяжелее сосуд. Так вот, сосуд для хранения азота, примерно на давление 100 атм, объемом 100 л, изготовленный из стали имеет разный вес в разных странах, где разная технология изготовления стали и, соответственно, разная ее механическая прочность. К примеру вышеупомянутый сосуд в США имеет вес 40 кГ, у нас - 80 кГ, а в Китае - 150 кГ.

          Другой пример, более близкий к энергетике. Рабочая напряженность электрического поля в мощном импульсном накопителе энергии (большой конденсатор, в котором в качестве диэлектрика является вода) в американском накопителе «Юпитер» выбирается 150 кВ/см, в нашем накопителе «Ангара» - всего 80 кВ/см. У американцев лучше технология приготовления воды и электродов, следовательно лучше свойства материала (воды) в накопителе, значит пробой в воде достигается при более высокой напряженности, и можно выбрать большую рабочую напряженность.

          Еще более близкий пример - изоляторы высоковольтных линий. Исторически первыми придумали изоляторы из фарфора. Технология их изготовления достаточно сложна, капризна. Изоляторы получаются довольно громоздкими и тяжелыми. Научились работать со стеклом - появились стеклянные изоляторы. Они легче, дешевле, их диагностика несколько проще. И, наконец последние изобретения - это изоляторы из кремнийорганической резины. Первые изоляторы из резины были не очень удачны. На их поверхности с течением времени образовывались микротрещины, в которых набивалась грязь, образовывались проводящие треки, затем изоляторы пробивались. Подробное изучение поведения изоляторов в электрическом поле проводов ВЛ в условиях внешних атмосферных воздействий, позволило подобрать ряд добавок, улучшивших атмосферостойкость, стойкость по отношению к загрязнениям и действию электрических разрядов. В результате сейчас создан целый класс легких, прочных изоляторов на различные уровни воздействующего напряжения.

Для сравнения, вес подвесных изоляторов для ВЛ 1150 кВ сопоставим с весом проводов в пролете между опорами и составляет несколько тонн. Это вынуждает ставить дополнительные параллельные гирлянды изоляторов, что увеличивает нагрузку на опору. Требуется использовать более прочные, а значит более массивные опоры. Это увеличивает материалоемкость, большой вес опор значительно поднимает расходы на монтаж. Для справки, стоимость монтажа составляет до 70% стоимости строительства линии электропередач. На примере видно, как один элемент конструкции влияет на конструкцию в целом.  Применение кремнийорганической резины позволяет резко удешевить и ускорить строительство. Сейчас в Новосибирске действуют, по крайней мере, три фирмы, разработавшие конструкции быстромонтируемых опор. Основой для этого прогресса является разработка и использование для изоляторов новых электротехнических материалов. Легкие изоляторы дают возможность облегчить опоры, тем самым уменьшается ветровая нагрузка, удешевляется изготовление, доставка и монтаж ВЛ.  


Основные типы материалов, применяемых в энергетике и электротехнике, композиционные материалы.  

Основные материалы, которые используются в энергетике, можно разделить на несколько классов - это проводниковые материалы, магнитные материалы, диэлектрические материалы. Общим для них является то, что они эксплуатируются в условиях действия напряжения, а значит и электрического поля. В них протекают электрические токи, выделяется тепловая энергия, происходят потери электрической энергии, происходит нагревание материалов. Более специфичны магнитные материалы, в них запасается магнитная энергия, в них также происходят ее потери, выделяется тепло при работе в переменном электрическом поле.

Здесь также следует выделить целый громадный класс материалов не по признаку их функционирования, а по составу. Это композиционные материалы.

Композиционные материалы - материалы, состоящие из нескольких компонент, выполняющих разные функции, причем между компонентами существуют границы раздела.

Примеры композиционных материалов - стеклопластик (стержни и трубы), стеклотекстолит листовой, материалы для контактов (смеси электропроводного и тугоплавкого металлов). Сочетание двух или более материалов позволяет использовать сильные стороны каждого из материалов. При этом свойства композита, далеко не всегда являются промежуточными между свойствами  компонентов. В ряде случаев улучшаются характеристики, либо появляется материал с принципиально новыми характеристиками. Рассмотрим, например стеклопластик. Он состоит из волокон стекловолокна, пропитанных полимером, обычно эпоксидным полимером. Основное достоинство этого материала - высокая механическая прочность. Прочность эпоксидного компаунда недостаточно велика, этот материал достаточно хрупок. Прочность стеклянного волокна - значительна, но  у него хрупкость также значительна. После пропитки волокон и последующей полимеризации прочность стеклопластикового стержня на разрыв не уступает прочности волокон, тогда как хрупкость у стержней в принципе отсутствует.

Основными характеристиками материалов являются электропроводность или обратная величина - сопротивление, плотность, механическая прочность при различных нагрузках, теплоемкость, теплопроводность. Для диэлектрических материалов наиболее важны удельное электрическое сопротивление, диэлектрическая проницаемость, диэлектрические потери, электрическая прочность.

Большинство этих терминов вам неизвестно, в процессе изучения  настоящего курса вы с ними подробно познакомитесь. 

Характеристики композиционных материалов 

Для начала введем понятие обобщенной проводимости.

Оказывается удельные теплопроводность, электропроводность, диэлектрическая проницаемость, коэффициент диффузии являются близкими характеристиками, в том смысле что они описывают потоки (зарядов, вещества, тепла, электрического поля) в зависимости от сил, вынуждающих эти потоки.

Например плотность тока связана с градиентом потенциала через проводимость:

Индукция связана с градиентом потенциала через диэлектрическую проницаемость:

Поток тепла связан с градиентом температуры через теплопроводность

          Для композиционных материалов оказалось, что зависимость какого то параметра композиции (e, s, l )от аналогичных параметров компонентов (e, s, l) идентична для любого из параметров. Поэтому говорят об обобщенной проводимости, т.е. о зависимости обобщенной проводимости композиции от аналогичных проводимостей компонентов.

Существует достаточно большое количество выражений для  вычислений обобщенной проводимости композиционных материалов (диэлектрической проницаемости,  теплопроводности, диффузии и электропроводности) в различных случаях. Кроме  того, теоретически получена группа оценок сверху и снизу, причем  при использовании дополнительной информации о частицах, среде и  характере их взаимодействия интервал между оценками можно сделать  достаточно узким.

Для оценочных расчетов более удобен способ  непосредственного вычисления обобщенной проводимости, исходя из  характеристик компонентов. Поскольку нас интересует, в первую очередь, диэлектрическая проницаемость и электропроводность, при использовании известных выражений,  полученных для расчета других видов проводимости будем заменять соответствующие  физические характеристики на нужные.

Здесь нужно ввести еще два понятия о структуре. Существуют две принципиально различные структуры: матричная и взаимопроникающая.

Структура является матричной, если по одному из компонентов можно попасть в любую точку этого компонента, не пересекая границ раздела компонент.

Такая компонента называется дисперсионной фазой, или матрицей композиции. Компонента, частички которой окружены дисперсионной компонентой называется дисперсной фазой, или наполнителем.

Например, частички сажи в полиэтилене. Полиэтилен является матрицей, частички сажи - наполнителем. Другой пример - молоко. Вода является дисперсионной средой, микрокапельки жира в ней - дисперсной фазой.

Структура называется взаимопроникающей, если не выполняется условие матричности и геометрические характеристики обоих компонентов (форма частиц) одинаковы .

Например, материал, приготовленный методами порошковой металлургии, когда смешивают два, или несколько разных порошков и полученную смесь прессуют.

Матричные структуры.Расчет электрических характеристик гетерогенных систем  достаточно точен в случае разбавленных суспензий. Для этих условий применимы известные формулы Максвелла, Вагнера-Винера, Оделевского. В случае малых концентраций они дают близкие значения. При достаточно больших концентрациях, и при большом различии  параметров компонентов практически все известные выражения непригодны.

Наиболее правдоподобно описывает зависимости формула Нильсена, которая предложена для описания наполненных полимеров. Для случая наполнитель - керамика с диэлектрической проницаемостью eк, а матрица - жидкость с диэлектрической проницаемостью eж формулу Нильсена можно написать в виде

                                                                     

 где Vк -объемная доля керамики, А - характеризует форму частиц, А=1.5 для сфер, А=3 для  частичек нерегулярной формы с минимальной поверхностью, А=4 для  пластинок и чешуек различной формы. Pm - максимально возможная объемная доля твердой фазы, характеризующая укладку и  форму частиц.

Анализ зависимостей диэлектрической проницаемости от концентрации твердой фазы показывает, что при малых концентрациях все зависимости дают примерно одинаковые значения. Экспериментальные данные не противоречат расчетам. Однако при повышении концентрации до 25-30% все зависимости, кроме формулы Нильсена дают значительно меньшие значения чем эксперимент. До концентрации 50-55% формула Нильсена дает блестящее совпадение с экспериментом. Причем это проверено на ряде жидкостей, начиная с трансформаторного масла и заканчивая сульфоланом. После 50-55% формула Нильсена начинает давать значения, большие чем зарегистрировано в эксперименте.

Взаимопроникающие структуры. Для этого случая также предложено большое количество выражений. Наиболее популярна формула Лихтенеккера

e=e1v1×e2(1-v1)

Видно, что в этой формуле оба компонента равноправны.  


Основное уравнение электропроводности

      Способность любых материалов проводить электрический ток определяется наличием зарядов в нем и возможностью их движения. Можно написать наиболее общую формулу, для плотности тока j верную для любых сред, 

j = S ni·qi·V                                                                                (2.1) 

      Здесь i - тип или cорт заряда, (например электроны, ионы различных молекул, молионы, заряженные частицы и т.п.), ni - концентрация зарядов i-cорта, qi - значение заряда, Vi - скорость носителей заряда. 

     Чтобы разобраться с электропроводностью разных материалов, необходимо понять, какие в них плотности (концентрации) заряда, как они появляются и от чего они зависят, какие величины зарядов, с какими скоростями могут двигаться. Все это главные вопросы в изучении электропроводности. 

    Для всех сред, за исключением вакуума, скорость носителей пропорциональна напряженности поля 

Vi = bi·E                                                                                           (2.2),

 где bi - подвижность носителей заряда. 

Подвижностью носителей заряда называется коэффициент пропорциональности между скоростью носителей заряда Vi и напряженностью поля E. 
     Размерность подвижности -  м2/(В с). Фактически подвижность численно равна скорости носителей заряда при напряженности поля 1 В/м. 

     Типы носителей заряда и их подвижность могут быть разными в различных средах. Подвижность носителей также сильно зависит от среды. Выражение (2.1) можно переписать, используя другие термины

 j = s·E,  s = S·ni·qi·mi                                                                   (2.3) 

Здесь s - удельная электропроводность. Еще один вариант записи выражения (2.3) 

j = E/r                                                                                            (2.4) 

где r - удельное сопротивление. 

      Нетрудно убедиться, что это все разные способы записи закона Ома в дифференциальной форме, для локальных параметров электрической цепи. Вы знаете, что для участка цепи закон Ома можно записать в виде I = U/R. Нетрудно убедиться, что для участка цепи, используя (2.4), площадь сечения участка S, длину l несложно получить классическое выражение для закона Ома. Для этого обе части в (2.4) умножаем на S, затем в правой части числитель и знаменатель умножаем на l. Получим в левой части ток, в числителе правой части напряжение, а если S перенести в знаменатель, то в знаменателе получим сопротивление. Таким образом мы доказали идентичность закона Ома в дифференциальной форме и в классической форме. 


Электропроводность проводников, полупроводников и диэлектриков.

       Анализ выражений (2.2 - 2.4) проведем с учетом природы и поведения носителей заряда в различных средах. В первую очередь необходимо выяснить механизмы появления и исчезновения зарядов. 

       Сначала необходимо рассмотреть электронное строение разных сред. 
       В газах электроны находятся на орбитах, принадлежащих конкретным атомам, или молекулам. Согласно квантовой модели атома, электрон может находиться только на определенных орбитах, которым соответствуют определенные, квантованные уровни энергии. На каждом уровне может находиться только один электрон. Электрон, находящийся на уровне, соответствующем самой дальней орбите, имеет самую слабую связь с ядром. Поэтому он легче всего ионизируется, т.е отрывается от ядра. 

Энергия, которую надо сообщить электрону, находящемуся в основном состоянии, для отрыва от "материнского" иона называется энергией ионизации W. 

       Чтобы оторвать второй электрон, надо сообщить ему гораздо больше энергии. Это второй уровень ионизации. Существует несколько уровней возбуждения, т.е. если сообщить электрону, энергию меньшую, чем энергия ионизации, то электрон перейдет на какой-либо уровень возбуждения. Все уровни дискретны. Их можно схематически изобразить на рисунке. 

       При сближении, допустим, двух атомов с одинаковыми энергетическими уровнями до расстояния, когда орбиты перекрываются, произойдет объединение электронных систем, причем каждый уровень разделится на два, которые чуть-чуть отличаются один от другого. Дело в том, что согласно законам квантовой физики, в принципе в любой системе не может быть двух одинаковых уровней. Этот принцип называется принципом Паули. Когда объединятся три атома - будет три расщепленных уровня. Когда образуется кристалл - будет из каждого уровня образована некоторая область разрешенных энергий, которая называется зона. В принципе в зоне уровни практически сливаются и можно говорить о сплошном спектре. При этом верхняя часть зоны располагается выше, чем начальный уровень в одиночном атоме. Нижняя часть зоны располагается ниже, чем начальный уровень. 

      Могут возникнуть ситуации, когда из-за этого сдвига, зоны, соответствующие разным уровням, будут перекрываться. Здесь наиболее интересен случай, когда перекрывается зона, занятая электронами и зона, которая появилась из расщепленного возбужденного уровня. Именно этот случай соответствует металлам. Когда эти зоны не перекрываются, между ними существует область запрещенных энергий, т.н. запрещенная зона. В зависимости от ширины этой зоны можно говорить о полупроводниках и диэлектриках. 

    Для металлов зоны перекрываются и электроны могут свободно перемещаться по образцу. Ширина запрещенной зоны равна нулю. Поэтому подвижные электроны всегда существуют в металлах в большом количестве. 

Можно посмотреть на это с других позиций. Дело в том, что в атомах металлов электроны достаточно слабо связаны с ионными остатками. Поэтому при образовании из атомов собственно материала металла эти электроны от разных атомов как - бы обобществляются и могут свободно передвигаться по всему объему металла. Они и являются носителями заряда. Примерное количество электронов в металле составляет около 1022 шт/см3. Их подвижность также велика. Оценки дают значения bi примерно 10-2-10-1 м2/(В ·с). Значения удельного сопротивления у металлов обычно находятся в диапазоне 0.01 мк·Ом·м до 1 мк·Ом·м. 

      При протекании тока в металле электрическое поле невелико. Можно сделать простую оценку по выражению (2.2). Если взять медный провод сечением 2 мм2 и пропустить ток 5 А, то при удельном сопротивлении меди =1.7 10-8 Ом·м, получим E = j· r = 4·10-2 В/м, или E = 40 мВ/м. Если таким проводом протянуть питание на 1 км, то получим на нем падение напряжения 40 В. 

      В диэлектриках и полупроводниках, зонная структура такова, что существует запрещенная зона определенной ширины. 

В полупроводниках ширина зоны составляет примерно от доли электрон-вольта до 3 электрон-вольт, в диэлектриках ширина зоны составляет примерно от 3 электрон-вольт до 10 электрон-вольт. 

Для того, чтобы возникла электропроводность в этих веществах, заряды должны попасть из валентной, занятой электронами зоны, в зону проводимости, т.е. любой свободный носитель заряда появится, если только ему сообщить энергию, не меньшую, чем ширина запрещенной зоны. 

      Под действием не очень сильных электрических полей, заряды появляются, в первую очередь, путем термоионизации молекул основного вещества или примесей, либо за счет появления из электродов. Последний способ называется эмиссией носителей заряда. При всех способах в диэлектрике появляются, в основном, электроны и ионы. Оценку их концентрации ni можно сделать из общих энергетических соображений. Изменение концентрации носителей заряда определяется в соответствии с обычным законом Аррениуса

dni/dt ~ n·n·e-W/kT                                                                            (2.5) 

где n - плотность молекул, - частота колебаний электрона в молекуле (~10141/сек), W - энергия ионизации (ширина запрещенной зоны), k- постоянная Больцмана, Т - температура. При комнатной температуре kT~1/40 эВ. 

       Здесь важно учесть не только появление носителей заряда, но и их исчезновение. Механизмы исчезновения зарядов - рекомбинация электрона с ионом, уход на поверхности и электроды. Для рекомбинации можно воспользоваться выражением

 dni/dt = - Krni 2                                                                                    (2.6) 

где Kr - коэффициент рекомбинации. В равновесии количество носителей не меняется со временем, складывая (2.5) и (2.6) и приравнивая сумму нулю получим окончательное выражение. 

ni = (N /Kr)1/2 ·e-W/2kT                                                                     (2.7) 

         Оценим проводимость по (2.3) с учетом (2.7): 

Твердые диэлектрики. Здесь носителями заряда могут быть электроны и дырки. Ионы "вморожены" и практически не имеют возможности движения bi ~10-23 м2/(В ·с). Подвижность электронов и дырок достаточно высока и может достигать be~10-3 м2/(В·c). Количество электронов и дырок определяется шириной запрещенной зоны W~5-10 эВ, тепловой энергией kT~1/40 эВ, плотностью молекул n~1027 шт/м3 и составляет пренебрежимо малую величину. Оценить ее ничтожность для диэлектриков можно с помощью выражения (2.5) 

dni/dt ~ 1027e-200 ·1014 ~ 104120-67~10412-6710-67 ~ 104110-2010-67~10-46 шт/(м3·сек). Образование свободных носителей заряда в разумном количестве, характерном для хороших диэлектриков, практически невероятно. Рекомбинация носителей заряда в твердых телах не затруднена. Ясно, что по этому механизму проводимость твердых диэлектриков практически отсутствует, т.к. заметное изменение концентрации возможно лишь за времена, сопоставимые с геологическими периодами. Поскольку основную роль в выражениях (2.7), (2.5) играет экспоненциальный множитель, то лишь наличие примесей с энергетическими уровнями внутри запрещенной зоны, вблизи от краев зоны с W~1 эВ, дает возможность проводимости твердых тел. Поскольку таких примесей обычно немного, электропроводность диэлектриков обычно мала. 

Таким образом, электропроводность диэлектриков определяется наличием примесей, уровни энергии которых, близки к уровням краев зоны проводимости или запрещенной зоны.

       Полупроводники. Для полупроводников с малой шириной запрещенной зоны существенный вклад в электропроводность может дать термоионизация молекул вещества. Однако гораздо более сильную роль играют специальные, т.н. "легирующие" добавки. Дело в том, что если в полупроводник ввести примеси, энергетические уровни которых будут попадать в запрещенную зону основного вещества, то ионизация этих уровней, если они заняты и энергетически близки к зоне проводимости приведет к появлению зарядов в зоне проводимости. Если уровни не заняты, но энергетически близки к валентной зоне, то электроны могут выйти из валентной зоны и осесть на этих уровнях. Тогда в валентной зоне появятся подвижные положительно заряженные объекты, т.н. дырки. 

        Газообразные диэлектрики. Рекомбинация носителей не затруднена, т.к. заряды разного знака могут беспрепятственно сближаться на близкое расстояние. В оценке считаем n ~ 1025 шт/м3, энергию ионизации W~10-20 эВ, подвижность электронов be~10-3 м2/(В·c), ионов bi~10-4 м2/(В·c), заряд e  = 1.6 10-19 Кл. Определяющим фактором является экспоненциальный множитель e-W/kT 

  dni/dt ~ 1025e-400 ·1014 ~ 103920-133 ~ 10392-13310-133 ~ 103910-4010-133 ~ 10-136 шт/(м3·сек), что дает пренебрежимо малую проводимость. 

На самом деле фактором, определяющим проводимость газов, является космическое излучение. Обычно в воздухе образуется порядка 1000 шт. электронов и ионов в 1 см3 за 1 сек. Часть электронов и ионов быстро рекомбинирует, часть прилипает к нейтральным молекулам, образуя долгоживущие отрицательные ионы. В равновесии в объеме газа обычно находится до 109 ионов/м3. Отсюда проводимость воздуха за счет естественной ионизации составит ~10-14 Cм/м. Отметим, что если искусственно создавать носители заряда,  то в газе можно получить высокую проводимость. 

 


Проводимость жидкостей и электролитов.

           Жидкости. Современные представления о проводимости диэлектрических жидкостей состоят в следующем. Здесь носителями заряда являются ионы, т.к. электроны легко прилипают к нейтральным молекулам жидкости и не могут существовать в свободном состоянии. Кроме того, в жидкости заряды могут переноситься молионами, частицами и даже пузырьками. Ионизация облегчена по сравнению с газами за счет большей диэлектрической проницаемости, ибо высота потенциального барьера (энергия ионизации) понижена в e раз. Это можно показать рассматривая кулоновскую энергию взаимодействия двух зарядов +e и -e, разошедшихся на расстояние r   W = e2/(4pe0er). Рекомбинация носителей заряда в жидкости затруднена, поскольку заряды взаимодействуют со средой, а именно, легко окружаются соседними молекулами, ориентированными соответствующими концами постоянных или индуцированных диполей к ионам. 

Эффект взаимодействия со средой называется сольватацией.      Ионизироваться могут молекулы основной жидкости, или примесей, если они являются ионофорами, т.е. имеющими преимущественно ионную связь между частями молекулы. Характерный пример ионофора - молекула NaCl, которую можно представить состоящей из ионов Na+ и Cl-. В жидкости молекула NaCl может растворяться и существовать сразу в виде ионов, либо ионных пар (Na+Cl). Превращение молекулы в пару ионов называется диссоциацией. Помимо ионофоров, в жидкости могут существовать ионогены, т.е. вещества, образующие ионы только при взаимодействии друг с другом. Например вода, растворенная в диэлектрической жидкости, может облегчать ионизацию других примесей, растворенных в жидкости. Оценка по выражению (1.9) степени ионизации примеси с потенциалом ионизации 4 В, растворенной в жидкости с e = 2 в количестве 1% с учетом рекомбинации (коэффициент рекомбинации Kr ~ 10-15 м3/cек) дает, что практически вся примесь оказывается диссоциированной на ионы. 

          Что касается подвижности, то она определяется движением жидкости. При этом подвижности любых ионов близки друг другу, т.к. ионы "вморожены" в жидкость и переносятся "микроструйками" жидкости. Наши эксперименты по исследованию движения носителей заряда и микропузырьков в нитробензоле под действием сильных импульсных электрических полей показали, что и пузырьки и ионы движутся при временах воздействия менее 1 мкс. Отсюда был сделан вывод, что они переносятся микроструйками, которые образуются за времена менее 1 микросекунды. Доказательством образования струек являлось зарегистрированное оптическим способом, в сочетании с электрооптическим способом, движение различных носителей заряда и пузырьков с одинаковыми скоростями. 

        Подвижность, связанная с движением жидкости, называется электрогидродинамической подвижностью.Она составляет mэгд ~ (10-7 - 10-8) м2/(В·c), т.е. на три - четыре порядка меньше подвижности ионов в газах. Оценка для вышеприведенного примера с диссоциированной примесью дает s ~10-9 Cм/м. 

        Таким образом, в жидкостях обычно проводимость больше, чем в газах и твердых телах за счет облегченной ионизации и затрудненной рекомбинации. 


       С другой стороны, отсутствие формы жидкости, легкость очистки дают возможность уменьшения электропроводности, что невозможно сделать с твердыми диэлектриками. В настоящее время существуют несколько новых технологий очистки жидкостей, например электродиализ, благодаря которым некоторые жидкости очищали до проводимости, не хуже лучших образцов твердых диэлектриков, типа янтарь, т.е. до проводимости менее  s ~ 10-19 Ом·м. 

       Еще необходимо отдельно рассмотреть электропроводность электролитов. В энергетике они применяются, в основном, в аккумуляторах. Кроме того, естественные электролиты обеспечивают электропроводность в системах заземления энергетических объектов. Дело в том, что земля имеет преимущественно электролитический характер электропроводности. 

При этом, наиболее важным видом электролитов являются водные электролиты. Вода является самым распространенным жидким веществом, кроме того, она является самым сильным растворителем и самой сильной ионизирующей средой. 

В электролитах заряды появляются в жидкости за счет электролитической диссоциации молекул на ионы. Условно все вещества, растворенные в жидкости и частично диссоциирующие на ионы делят на два типа: сильные электролиты и слабые. Сильные электролиты - вещества полностью диссоциирующие на ионы. Это соли типа NaCl, сильные кислоты типа HCl. Выше, при рассмотрении проводимости диэлектрических жидкостей они назывались ионофорами.  Слабые электролиты - малодиссоциирующие вещества, т.е. они растворяются в виде молекул, только малая часть молекул диссоциирует на ионы. Пример - спирты, органические кислоты (например, уксусная кислота). Число ионов зависит от концентрации растворенных веществ. Подвижность ионов - невелика, обычно она составляет порядка 10-8 м2/(В·с). 

        За счет большой растворяющей способности воды, обычно электропроводность влажных сред оказывается достаточно велика, т.к. растворенные вещества зачастую содержат соли, которые сильно диссоциируют. Причиной электропроводности увлажненных диэлектриков является растворение в воде различных примесей с их последующей диссоциацией на ионы. Поэтому обычно самым большим "врагом" электрической изоляции является вода, попадание которой в диэлектрик ухудшает электрофизические (конкретно - диэлектрические) характеристики материала.

Электрофизические характеристики материалов. Диэлектрическая и магнитная проницаемости.

Особенностями использования  материалов в электроэнергетике является то, что они эксплуатируются в условиях воздействия электрических полей, и в несколько меньшей степени, в условиях воздействия магнитных полей. Основными процессами, происходящими под действием этих полей являются поляризация вещества, электропроводность, намагничивание вещества. В предыдущей лекции рассматривалась электропроводность. В этой лекции будут рассмотрены следующие вопросы:

Диэлектрическая проницаемость и электрические поля в диэлектриках.

Магнитная проницаемость и магнитные поля.

          Прежде чем приступить к лекции хотелось бы напомнить термины и определения. 

Электрическое поле - это вектор, направленный от положительного заряда к отрицательному заряду. Численно оно равно силе, действующей на единичный заряд (заряд в один кулон). Размерность напряженности поля в системе единиц СИ - В/м. С напряжением между точками a и b оно связано следующим выражением:   

(3.1),

а с потенциалом j:      E = -grad j.                                          (3.2)                                                                

В однородном поле, в межэлектродном зазоре d, эти выражения упрощаются  

                          U = E·d, или E = U/d                                                 (3.3) 


Диэлектрическая проницаемость материалов. 


        Определение этой величины вы должны помнить еще из школы. Давайте вспомним. Если взять плоский конденсатор в вакууме, то заряд на каждой его пластине равен (по модулю):

                                                                              (3.4)

где e0 - диэлектрическая постоянная, или диэлектрическая проницаемость вакуума, e0 = 8.85 10-12 Ф/м, S- площадь каждой из пластин, d - зазор между пластинами,  U - напряжение между ними. Разделив на площадь и перейдя к плотности заряда на обкладке получим s = e0E.

Если в межэлектродное пространство ввести диэлектрик, то что произойдет? Все зависит от того, подключен заряженный конденсатор к источнику или отключен. В подключенном конденсаторе напряжение между пластинами принудительно поддерживается, но заряд на каждой пластине увеличивается до нового значения Qm

Отношение Qm/Q0 =eназываетсядиэлектрической проницаемостьюматериала. 

Из самого определения видно, что диэлектрическая проницаемость материала является безразмерной величиной. Перейдя к плотности заряда на обкладке в случае диэлектрика получим s = e0eE.

Откуда притекает дополнительный заряд? Ясно, что заряд притекает из источника.

В отключенном от источника заряженном конденсаторе ситуация несколько отличается. Заряд не может измениться, т.к. ему некуда утекать и неоткуда притекать. В этом случае изменится другой параметр. Оказывается уменьшаются напряжение на конденсаторе и, соответственно, напряженность поля в конденсаторе. 

Коэффициент ослабления поля тот же самый, как и в случае увеличения заряда при подключенном источнике, т.е. он равен e.        Это второе определение диэлектрической проницаемости.

          За счет чего это происходит? Рассмотрим этот вопрос подробнее. Здесь придется обратиться к понятию поляризации. Как известно, молекулы состоят из атомов, окруженных электронными оболочками. При этом электроны могут равномерно распределяться по молекуле, а могут и концентрироваться на каких-либо атомах. В первом случае говорят, что молекула неполярная. Пример - молекула водорода или атом гелия, или молекула бензола. Во втором случае в молекуле образуются области с положительным и отрицательным зарядом. Если в молекуле можно выделить направление, вдоль которого с одной стороны можно расположить положительные заряды, а с другой стороны - отрицательные, то такая молекула называется полярной или дипольной.

Дипольный момент молекулы является вектором, направленным от отрицательного к положительному заряду. Численно он равен произведению расстояния между зарядами на модуль заряда.

В неполярной молекуле под действием электрического поля происходит смещение электронных оболочек. Возникает индуцированный дипольный момент у молекулы, молекула поляризуется. 

Поляризация засчет смещения электронов называетсяэлектронной. Возникающий дипольный момент невелик. Диэлектрическая проницаемость неполярных жидкостей и твердых диэлектриков также невелика, она не превышает 3. 

Диэлектрики, состоящие из неполярных молекул называютсянеполярными диэлектриками.

В полярной молекуле под действием поля происходит поворот диполя в направлении  напряженности электрического поля. В этом случае, в зависимости от значения дипольного момента молекулы и концентрации молекул поляризация может быть значительной. Для жидкостей и твердых диэлектриков с дипольной поляризацией диэлектрическая проницаемость достигает примерно 100 и даже больше. 

Диэлектрики, состоящие из полярных молекул называютсяполярными диэлектриками.

В некоторых твердых диэлектриках может существовать особый вид поляризации: спонтанная, или доменная поляризация. Она существует только в кристаллах, но далеко не во всех, в аморфных телах ее не бывает. Оказывается иногда в среде возникают самопроизвольно микроскопические области с поляризацией, которая получается при смещении положительно заряженных ионов решетки в одну сторону, а отрицательно заряженных ионов в другую сторону. 

Микрообласть со спонтанной поляризацией называется доменом.  Обычно размер доменов составляет микроны и десятки микрон. Суммарный дипольный момент любого образца равен нулю, т.к. дипольные моменты доменов направлены в разные стороны. 

Если дипольные моменты доменов хаотически направлены в разные стороны, то такой диэлектрик называется сегнетоэлектриком.

 Если домены существуют парами, причем у каждой пары дипольные моменты направлены в противоположные стороны, такой диэлектрик называется антисегнетоэлектриком. Под действием электрического поля домены в диэлектрике поворачиваются в направлении электрического поля, как гигантские диполи. Только в отличии от диполей, где молекулы физически поворачиваются, в доменах перестраивается структура, так, что результирующий вектор поляризации каждого домена чуть-чуть смещается в направлении поля.  

Диэлектрическая проницаемостьсегнетоэлектриков и антисегнетоэлектриковвелика, она может достигать десятков тысяч.

Суммарный дипольный момент единицы объема называетсяполяризацией . Вектор поляризации, появляющейся под действием электрического поля, направлен вдоль направления электрического поля. Его значение связано с напряженностью поля P = e0cE, где c- диэлектрическая восприимчивость. Диэлектрическая проницаемость связана с восприимчивостью e= 1+c.

В газообразном диэлектрике количество дипольных моментов мало вследствие низкой плотности газа, поэтому диэлектрическая проницаемость мало отличается от единицы, даже для полярных газов (Отличие в третьем, четвертом знаке после запятой).

Именно поляризация и вызывает увеличение плотности заряда на обкладках конденсатора при подключенном источнике. Значение плотности заряда на обкладках конденсатора  s= P+e0E. Естественно, что в случае вакуума поляризация равна нулю, диэлектрическая проницаемость в точности равна единице.

В электродинамике вводят понятиевектора электрического смещения

=  e0eE                                                                      (3.5.)

который определяет заряд как в случае вакуума, так и в случае диэлектрика. Другие названия этого термина - электрическая индукцияили электростатическая индукция. Размерность индукции Кл/м2. Кроме приведённых выражений полезно будет также вспомнить соотношения для электрического смещения D:

=s = e0eE                                                                         (3.6.)

            Энергия электрического поля в среде связана с диэлектрической проницаемостью  

W = e0×e×E2/2 или W = DE/2, или W = D2/2e.

Для устройств, содержащих в себе электрические поля важно понимать как изменяется напряженность электрического поля при использовании комбинации двух диэлектриков с разной диэлектрической проницаемостью. Если расположить диэлектрики так, что электрическое поле перпендикулярно поверхности раздела, то значения напряжённости поля в каждом материале обратно пропорциональны диэлектрическим проницаемостям:

=

                                                                     (3.7)

   Рассмотрим простую задачку. В плоский конденсатор с зазором d и напряжением U вводят пластину диэлектрика, которая имеет толщину d1, диэлектрическую проницаемость e. Как изменится поле в оставшейся части зазора и какое поле будет в диэлектрике?

Несложно решить эту задачу воспользовавшись выражениями (3.3) и (3.7), которые для нашего случая можно переписать как

Ев(d-d1) + Eдd1= U                                                                                 (3.8)

Евeв= Eдeд

Решив систему уравнений получим:

       (3.9)

Анализируя эти выражения можно увидеть, что поле в газовой прослойке всегда увеличено, а в диэлектрической - уменьшено. Емкость конденсатора в этом случае увеличена, но незначительно по сравнению с емкостью конденсатора без диэлектрика.

В случае, когда электрическое поле параллельно поверхности раздела, напряженности поля в материалах одинаковы. Этот случай можно реализовать, вводя в конденсатор диэлектрик, толщины, равной величине межэлектродного зазора в конденсаторе. Емкость, при этом, увеличивается существенно, пропорционально объемной доле диэлектрика .

Для понимания процессов в диэлектриках важно знать значения полей в случае различных электродов. Наиболее часто используются модельные представления электродных систем, к которым с той или иной степенью приближения можно свести многие реальные системы электродов. Это три типа полей:

- плоско- параллельное,

- радиально-цилиндрическое, или аксиальное

- радиально-сферическое.

Ниже приводятся описание этих полей и необходимые для расчета формулы.

Плоско-параллельное поле. Здесь эквипотенциальные поверхности (поверхности уровня) представляют собой параллельные плоскости, а линии индукции, совпадающие с направлением вектора напряженности поля (которая во всех точках поля одинакова), - перпендикулярны этим плоскостям.

ris1_1.gif (3222 bytes)
Значение ёмкости:         

                                                                            (3.10)

В плоско-параллельном  поле напряженность Е  одинакова во всех точках.Поэтому: 

                                              (3.11)

                

Радиально-цилиндрическое поле. Эквипотенциальными  в этом поле являются коаксиальные (имеющие общую ось) цилиндрические поверхности, а линии поля располагаются в радиальном направлении. Распределение напряженности электрического поля: 

ris1-2.gif (4060 bytes)

Е( r ) =

Значение емкости:

           (3.12)

r1 - радиус внутреннего цилиндра, r2 - радиус внешнего цилиндра

Радиально-сферическое поле.В этом поле поверхности уровня - это сферы с общим центром, а линии индукции направлены по радиусам. 

             Распределение напряженности электрического поля:

Е( r )=

 

Значение емкости:

(3.13)

Причем емкость шара по отношению к сфере бесконечного радиуса

                            (3.14)

Ёмкость полушария в два раза меньше емкости шара. 

Магнитная проницаемость.

          Аналогично рассмотрению диэлектрической проницаемости, связывающей электрическую индукцию с напряженностью электрического поля, магнитная проницаемость связывает магнитную индукцию B с напряженностью магнитного поля H.

         B=m0×m×H                                                                                      (3.15)

Здесь m0- магнитная постоянная или магнитная проницаемость вакуума.m0= 410-7 Гн/м. Можно ввести понятие намагниченности m0M = B - m0H. Этот фактор вносит в магнитную индукцию именно среда, т.е. намагниченность является характеристикой среды. Аналогично поляризации среды в электрическом поле намагниченность складывается из намагниченностей отдельных атомов, которые называются магнитными моментами атомов M = Smi. Намагниченность обычно пропорциональна напряженности магнитного поля

        M = cм×Н                                                                                         (3.16)

где cм - магнитная восприимчивость вещества. Значения m и cм связаны m = cм+1

Энергия магнитного поля W = B×H/2 =m0×m×H2/2 = B2/2m0×m

Магнитное поле имеет отличия от электрического поля. Электрическое поле создается зарядами, магнитное - токами. Силовые линии электрического поля начинаются на положительном заряде и, обязательно, заканчиваются на отрицательном заряде. Силовые линии магнитного поля замкнуты, они окружают линии тока. В электрическом поле заряд порождает индукцию поля.

      D = q/4pe0×e×r2                                                        (3.17)                                                                               

            В магнитном поле ток порождает напряженность магнитного поля (закон Био-Савара).

    H = I/2pr.                                                                                                    (3.18)

            Приведем еще выражение для напряженности поля и индукции в длинном соленоиде, которое специфично именно для магнитного поля.

    H = n×I, B = m0×n×I                                                                                     (3.19)

где n- число витков катушки на единицу длины.

            В электрическом поле сила, действующая на заряд, пропорциональна напряженности поля (закон Кулона). В магнитном поле, сила действующая на заряд пропорциональна индукции. Еще одно принципиальное отличие состоит в том, что диэлектрическая проницаемость не может быть меньше 1, тогда как магнитная проницаемость может быть меньше 1 в некоторых материалах.. 

          Различные материалы по разному ведут себя в магнитном поле и, соответственно имеют различную магнитную проницаемость.

    Диамагнетики- вещества, имеющие магнитную проницаемость меньше 1.

Подавляющее большинство веществ являются диамагнетиками. Диамагнетизм проявляется тогда, когда атомы и молекулы не имеют магнитного момента в отсутствии магнитного поля, а намагниченность создается только за счет действия магнитного поля на электроны молекул. При этом магнитная восприимчивость cм< 0. По порядку величины значение восприимчивости составляет (-10-6).
    Парамагнетики- вещества, имеющие магнитную проницаемость больше 1.

Эти вещества содержат атомы и электроны, имеющие собственный магнитный момент, который связан с орбитальным движением электронов или с собственным моментом импульса электрона, т.н. спином. Парамагнетиками являются кислород, магний, натрий (NaCl - диамагнетик), кальций, титан, палладий. 
   Ферромагнетики- вещества, имеющие магнитную проницаемость много больше чем 1, которая создается спонтанной намагниченностью доменов, хаотически ориентированных в пространстве.

Это железо, никель, кобальт и ряд более редких веществ. На основе этих элементов изготавливаются магнитные материалы.
    Ферримагнетики- вещества, имеющие магнитную проницаемость много больше чем 1, которая создается спонтанной намагниченностью кристаллических решеток, попарно антипараллельно ориентированных в пространстве. При этом суммарный магнитный момент не равен нулю.  
    Антиферромагнетики - вещества, имеющие магнитную проницаемость немного больше чем 1, которая создается спонтанной намагниченностью кристаллических решеток, попарно антипараллельно ориентированных в пространстве и скомпенсировавших друг друга.

Примеры ферримагнетиков и антиферромагнетиков - ферриты, соединения типа Fe2O3 c MeO, где Ме - двухвалентный металл.

Вернуться на главную