К другим разделам курса физики, электротехники

Электротехника

Лабораторные

Сборник задач по физике, электротехнике


Свободные затухающие колебания. Добротность колебательного контура.

Всякий реальный колебательный контур обладает сопротивлением (рис.16.3). Энергия электрических колебаний в таком контуре постепенно расходуется на нагревание сопротивления, переходя в джоулево тепло, вследствие чего колебания затухают.

Рис.16.3. Колебательный RLC-контур.

Теоремы и методы расчета сложных резистивных цепей Узлом электрической цепи (схемы) называется точка, в которой сходятся не менее трех ветвей. Ветвью электрической цепи (схемы) называется участок, состоящий из последовательно включенных элементов, расположенных между двумя смежными узлами. Сложной называется электрическая цепь (схема), содержащая не менее двух узлов, не менее трех ветвей и не менее двух источников энергии в разных ветвях.

Уравнение свободных затухающих колебаний можно получить, исходя из того, что в отсутствии внешнего источника напряжения, сумма падений напряжений на индуктивности, емкости и сопротивлении равна нулю для любого момента времени:

 

или, поскольку,

.

Введя обозначение

 ,

этому уравнению можно придать вид:

,

где .

Решение полученного уравнения имеет вид:

 


где

 


Мы видим, что частота свободных затухающих колебаний ω′ меньше собственной частоты ω0. Подставив значения ω0 и β, получим:

Амплитуда затухающих колебаний заряда конденсатора q0(t) уменьшается со временем по экспоненциальному закону (рис.16.4). Коэффициент β называется коэффициентом затухания.

Рис.16.4. Изменение заряда конденсатора со временем в RLC-контуре.

Затухание колебаний принято характеризовать декрементом колебаний λ, определяемым как:

.

Легко видеть, что декремент колебаний обратен по величине числу колебаний Ne, совершаемых за время, в течение которого амплитуда колебаний уменьшается в е раз: λ=1/Ne. Добротностью колебательного контура называется величина:

Из этой формулы видно, что добротность тем выше, чем меньше коэффициент затухания β. При малых затуханиях (λ<<1) можно приближенно считать, что

.

Амплитуда тока в контуре, как и заряд на конденсаторе, убывает со временем по закону . Энергия W, запасенная в контуре, пропорциональна квадрату амплитуды тока (или квадрату напряжения на конденсаторе). Следовательно, W убывает со временем по закону e-2βt. Относительное уменьшение энергии за период колебания Т (при малом затухании) есть:

.

Таким образом, потери энергии в колебательном контуре тем меньше, чем выше его добротность.


На главную сайта Dvoika.net