Топология Переменный ток Основы матричных методов Резонансные явления Мощность Метод эквивалентного генератора Трехфазные электрические цепи Графические методы расчета Линия без искажений Переходные процессы магнитные цепи

Базовый общетехнический курс по электротехнике

Метод эквивалентных синусоид (метод расчета по действующим значениям)

Сущность метода эквивалентных синусоид была изложена в лекции №35 при рассмотрении его графической реализации. При аналитическом варианте применения метода отсутствует основной этап графических построений, в частности векторных диаграмм, который заменяется соответствующими вычислениями с использованием аналитических соотношений для комплексов эквивалентных синусоидальных величин.

Графический вариант применения метода эквивалентных синусоид характеризуется, в первую очередь для относительно простых схем, большей наглядностью. В то же время при аналитическом подходе повышается точность расчетов за счет устранения погрешностей, связанных с графическими построениями.

Переход к эквивалентным синусоидам в сочетании с символическим методом позволяет составлять эквивалентные схемы замещения с эквивалентными параметрами и . Трудности анализа и расчета заключаются в том, что значения этих параметров зависят от искомых напряжений, токов и потоков, т. е. заранее не известны.

Переход к эквивалентным синусоидам соответствует замене реальных петель гистерезиса или   эквивалентными эллипсами. На рис. 1 представлен эквивалентный эллипс, заменяющий реальную кривую , которому соответствуют параметрические уравнения, определяемые синусоидальными функциями

где -угол потерь, определяющий мощность потерь в единице объема ферромагнетика за один цикл перемагничивания

.

При переменных токах потери в стали сердечника определяются не только гистерезисом, но и вихревыми токами, вызываемыми переменным потоком. Таким образом, динамическая петля гистерезиса шире статической и отличается от последней по форме. Отметим, что для уменьшения потерь от вихревых токов сердечник набирают из изолированных тонких листов (при частоте Гц их толщина мм), выполненных из сталей со специальными присадками, снижающими проводимость.

При пренебрежении неравномерностью распределения магнитной индукции по сечению мощность потерь от вихревых токов определяется соотношением

,

где - эмпирический коэффициент, определяемый сортом стали и размером листов; G – масса сердечника.

,

где n=1,8…2,2 (часто в первом приближении принимается n=2); - эмпирический коэффициент, зависящий от сорта стали.

Полные потери в стали , помимо указанных, определяются также дополнительными , связанными с магнитной вязкостью материала, т.е.

.

 Для определения параметров эквивалентной синусоиды тока: его действующего значения и угла потерь (фазового сдвига относительно магнитного потока) - удобно пользоваться соотношением для мощности потерь в стали

и намагничивающей мощности

где – напряжение, приложенное к нелинейной катушке индуктивности с числом витков и площадью сечения сердечника -соответственно удельные (на единицу массы сердечника) потери в стали и намагничивающая мощность. Значения и берутся из экспериментальных характеристик и , выражающих зависимости этих величин от амплитуды индукции (см. в качестве примера кривые на рис. 2) в режиме синусоидальной индукции.

Переход к эквивалентным синусоидам и соответственно к эквивалентному эллипсу, заменяющему реальную кривую зависимости , позволяет ввести в рассмотрение относительную комплексную магнитную проницаемость

 

где - объем стали сердечника длиной и сечением ,

и комплексное магнитное сопротивление

являющееся аналогом магнитному сопротивлению в нелинейных цепях при постоянных магнитных потоках.

 

Катушка с ферромагнитным сердечником

Нелинейная катушка индуктивности изображена на рис. 3. Здесь R-активное сопротивление обмотки с числом витков w; Ф-основной поток, замыкающийся по сердечнику; -поток рассеяния, которому соответствует индуктивность рассеяния и индуктивное сопротивление рассеяния .

Различают параллельную и последовательную схемы замещения катушки с ферромагнитным сердечником. Эти схемы, а также соответствующие им соотношения и векторные диаграммы приведены в табл. 1.


Таблица 1. Схемы замещения, уравнения и векторные диаграммы для катушки c ферромагнитным сердечником

  Схема замещения

 Уравнения и соотношения для параметров

  Векторная диаграмма

Параллельная


 


Последовательная


где

где


 


Примечание. 1. Если сердечник содержит воздушный зазор величиной , в схему замещения параллельно ветви, содержащей нелинейную катушку с проводимостью , включается дополнительная линейная катушка индуктивности с сопротивлением

2. При пренебрежении активным сопротивлением обмотки и потоком рассеяния связь между эквивалентным электрическим сопротивлением катушки и комплексным магнитным сопротивлением сердечника определяется соотношением

или

.

 

Трансформатор с ферромагнитным сердечником

Трансформатор с ферромагнитным сердечником изображен на рис. 4. Здесь и - активные сопротивления первичной и вторичной обмоток с числами витков и соответственно. - основной поток, замыкающийся по сердечнику. и - потоки рассеяния первичной и вторичной обмоток, которым соответствуют индуктивности рассеяния и и индуктивные сопротивления рассеяния и .

Основные соотношения, схема замещения и векторная диаграмма для трансформатора с ферромагнитным сердечником приведены в табл. 2.

 

Таблица 2. Трансформатор с ферромагнитным сердечником

  Вид информации

Уравнения, соотношения, векторная диаграмма

  Примечание

Уравнения для первичной и вторичной цепей

Коэффициент трансформации

Параметры вторичной цепи, приведенные к первичной:

напряжение на нагрузке

ток

ЭДС

сопротивление вторичной обмотки

сопротивление нагрузки

Уравнения приведенного трансформатора

где

где

У правильно сконструирован-ных трансформато-ров при нагрузке, близкой к номинальной,

  Схема замещения


Выражения для и те же, что и для катушки с ферромагнитным сердечником (см. табл. 1)

Векторная диаграмма


Диаграмма строится, начиная со вторичного контура, для произвольного расположения .

- угол нагрузки

 

Литература

  1. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
  2. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.2. Жуховицкий Б.Я., Негневицкий И.Б. Линейные электрические цепи (продолжение). Нелинейные цепи. –М.:Энергия- 1972. –200с.
  3. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

Контрольные вопросы и задачи

  1. Из каких составляющих складываются общие потери в стали сердечника ?
  2. Как на практике подсчитываются потери в стали и намагничивающая мощность ?
  3. Объясните понятия комплексной магнитной проницаемости и комплексного магнитного сопротивления.
  4. Нарисуйте последовательную и параллельную схемы замещения катушки с ферромагнитным сердечником и соответствующие им векторные диаграммы.
  5. Как определяются параметры и сердечника ?
  6. Как в схеме замещения нелинейной катушки учитывается воздушный зазор в сердечнике ?
  7. Нарисуйте схему замещения и векторную диаграмму для трансформатора с ферромагнитным сердечником.
  8. Катушка со стальным сердечником, имеющим , сечение , длину и воздушный зазор , включена на переменное напряжение ; число витков обмотки . Пренебрегая рассеянием и потерями в стали сердечника и считая активное сопротивление обмотки равным 100 Ом, определить потребляемый ток и активную мощность.
  9. Ответ: .

  10. При напряжении с действующим значением и частотой на зажимах дросселя ток в его обмотке , а потребляемая мощность . Число витков обмотки дросселя , а ее активное сопротивление . Измерения показали, что максимальное значение рабочего потока в сердечнике . Определить параметры элементов параллельной схемы замещения дросселя.
  11. Ответ: .


На главную