Судовая ядерная ППУ ледокола

Ядерные реакторы на быстрых нейтронах
География размещения БН
Проект БРЕСТ-ОД-300
Проект БРЕСТ-1200
Реактор БР-5 (10), г.Обнинск
Реактор БОР-60, г. Димитровград
Реактор БН-350, г. Шевченко
Реактор БН-600
Реактор БН-800
Реактор БН-1200
ВВЭР
(Водо-Водяной Энергетический Реактор)
АЭС с ВВЭР-440
ВВЭР-1200
ВВЭР-1000
Реактор Большой Мощности Канальный (РБМК)
РБМК-1000 история создания
Устройство реактора РБМК-1000
Концепции безопасности реакторов РБМК
Тепловыделяющая сборка
Атомные станции
Белоярская АЭС
Ленинградская АЭС
Ленинградская АЭС-2
Белорусская АЭС
Нововоронежская АЭС
Нововоронежская АЭС-2
Ростовская АЭС
Смоленская атомная станция САЭС
Месторасположение Смоленской АЭС
История строительства
Деятельность
Экологическая политика
Экологический контроль
Атомные надводные корабли
Суда с ядерными энергетическими установками в России
Обзор судов с ядерной энергетической установкой
Атомная установка на авианосце
Атомный авианосец проекта «Шторм»
Тяжёлые атомные ракетные крейсеры проекта «Орлан»
История создания крейсеров проекта «Орлан»
Вооружение крейсеров проекта «Орлан»
Атомные ледоколы
РИТМ-200 реактор для атомного ледокола
Судовая ядерная ППУ ледокола
Реактор ледокола
Корпус реактора
Система компенсации давления
Система газоудаления
Второй контур
Атомная подводная лодка
Атомная шестиракетная субмарина «К-19»
Ракетный подводный крейсер стратегического назначения
АПЛ «Наутилус». США.
 

Реактор, первый контур

Реактор представляет собой водо-водяной реактор корпусного типа и предназначен для выработки тепловой энергии за счет деления ядерного топлива в активной зоне и передачи полученной энергии теплоносителю 1 контура при работе реактора в составе реакторной установки.

Реактор и связанные с ним оборудование и системы выполняют следующие функции:

• обеспечение поддержания управляемой цепной реакции деления ядерного топлива активной зоны на заданных, в соответствии с проектными режимами, уровнях мощности с выполнением требований нормативной документации по безопасности атомных станций;

• обеспечение поддержания заданных параметров - давления и температуры теплоносителя 1 контура в соответствии с проектными режимами и требованиями нормативной документации по безопасности атомных станций;

• обеспечение отвода тепла, выделяющегося при работе активной зоны, теплоносителем 1 контура во всех проекциях режимах;

• обеспечение регламентированного уровня ионизирующего и теплового излучения в реакторном помещении.

Основная циркуляции теплоносителя I контура в реакторе (рис. 6) осуществляется следующим образом: теплоноситель через внутренние насосные патрубки попадает в напорную камеру реактора. Далее, пройдя кольцевой зазор между корпусом и обечайкой блока выемного и щелевой фильтр, теплоноситель попадает в напорную камеру активной зоны, расположенную под нижней плитой выемного блока. Пройдя активную зону, теплоноситель попадает в сливную камеру реактора, откуда он поступает во внутренние патрубки парогенераторов. Из парогенераторов теплоноситель по кольцевым полостям между главными и внутренними патрубками поступает во всасывающую полость электронасосов, которая расположена над конической обечайкой и разделена на четыре камеры, гидравлически объединяющие попарно электронасос и парогенератор, реализуя при этом четырехпетлевую схему циркуляции теплоносителя 1 контура. Из камер теплоноситель по кольцевым полостям главных насосных патрубков поступает в гидрокамеры на всас электронасосов.

При естественной циркуляции движение теплоносителя в реакторе осуществляется тем же путем, что и при принудительной.

Конструктивно реактор (рис. 7) выполнен в виде сосуда высокого давления с крышкой, в котором размещены активная зона, РО КГ и РО A3, а на крышке - привода ИМ КГ и ИМ A3, термопреобразователи сопротивления, преобразователи термоэлектрические, предназначенные для измерения температуры в реакторе.

Рис 5. Реактор

Рис 5. Реактор

В состав реактора входят следующие основные сборочные единицы:

корпус;

крышка;

блок выемной;

активная зона;

привод РО СУЗ (5 шт.);

исполнительный механизм АЗ (4 шт.);

контрольно-измерительные приборы:

термопреобразователь сопротивления (6 шт.)

преобразователь термоэлектрический (7 шт.)

комплект монтажных частей.

Корпус предназначен для размещения в нём составных частей реактора. Корпус состоит из обечайки с патрубками, гладкой цилиндрической обечайки и эллиптического днища. Внутренняя поверхность корпуса и главных патрубков защищена от коррозионного воздействия теплоносителя 1 контура антикоррозионной наплавкой.

Корпус имеет следующие патрубки:

• 4 главных патрубка для подсоединения корпусов парогенераторов;

• 4 главных патрубка для подсоединения гидрокамер главных циркуляционных насосов;

• 1 малый патрубок для подключения к системе компенсации давления и к системе очистки и расхолаживания;

• 2 малых патрубка для подключения к системе аварийного охлаждения активной зоны;

• 1 малый патрубок для подключения к системе очистки и расхолаживания.

Выемной экран

Рис 6. Выемной экран;

1- верхняя плита; 2-корпус выемного экрана; 3- средняя плита; 4-нижняя плита блока; 5-экраны;6-щелевые фильтры;7-направляющие трубы; 8-нижняя плита РО КГ;9-г-образные болты; 10-направляющие трубы.

Выемной блок опирается на бурт разделительной обечайки корпуса реактора и крепится к ней при помощи Г-образных болтов, расположенных в верхней плите.

Внутри выемного блока расположены пять независимых РО КГ: центральный, два средних и для периферийных. Каждый РО КГ конструктивно представляет две плиты, связанные между собой стаканами, в которых установлены подшипниковые узлы с графитовыми вкладышами, скользящими по направляющим трубам яри перемещении РО КГ. Внутри направляющих труб размещены ТВС.

К нижним плитам РО КГ прикреплены стержневые ПЭЛ, перемещающиеся в направляющих трубках, размещенных между средней и нижней плитами выемного блока.

Связь каждого РО КГ с винтом привода ИМ КГ осуществляется с помощью штока и удлинителя штока. Шток соединяется с нижней плитой РО КГ при помощи сухаря, а с удлинителем штока - при помощи байонетного соединения. Удлинители ориентируются по углу и фиксируются относительно штоков при помощи фиксаторов.

Винты приводов ИМ КГ соединяются с удлинителями штоков при помощи байонетного соединения.

К нижней плите блока выемного болтами крепится щелевой фильтр с экранами, предназначенный для предохранения активной зоны от попадания посторонних предметов. Экраны предназначены для снижения нейтронного потока на днище корпуса реактора.

Основные детали выемного блока изготовлены из нержавеющей аустенитной стали.

Направляющие трубки ПЭЛ изготовлены из циркониевого сплава Э-635, обладающего низким сечением поглощения нейтронов.

Основные ТВС

Рис 7. Основные ТВС:

1 – головка; 2 – пробка; 3 – пружина; 4 - замок цанговый; 5 – подвеска; 6 – кассета; 7 – гайка; 8 – кольцо; 9 – головка; 10 – обойма; 11 – полукольцо; 12 - решетка дистанционирующая;13 – чехол; 14 – втулка; 15 – кольцо; 16 – наконечник.

TBС под стержень A3

Рис 8. TBС под стержень A3.

1 – Головка, 2 – Пружина, 3 - Замок цанговый, 4 – Подвеска, 5 – Кассета, 6 – Гайка, 7 – Кольцо, 8 - Головка , 9 – Обойма, 10 – Полукольцо, 11 - Решетка дистанционирующая, 13 – Чехол, 14 – Вытеснитель, 15 – Втулка, 16 – Кольцо, 17 – Наконечник.

ТВС со штоком.

Рис 9. ТВС со штоком.

1 – Головка; 2 – Замок шариковый; 3 – Пружина; 4 – Шток; 5 – Сухарь; 6 – Гайка; 7 – Подвеска; 8 – Кассета; 9 – Головка; 10 – Гайка; 11 – Кольцо; 12 – Полукольцо; 13 – Обойма; 14 - Решетка дистанционирующая; 15 – Чехол; 16 – Втулка; 17 – Кольцо; 18 – Наконечник.

Основные конструктивные решения:

• конструкция активной зоны исключает выброс, заклинивание и самопроизвольное расцепление рабочих органов СУЗ с приводами ИМ КГ и приводами ИМ A3 путем размещения ПЭЛ в направляющих трубах из радиационно- и коррозионностойкого циркониевого сплава, а стержней A3 в гильзах - сухих толстостенных трубах. ПЭЛ при креплении на плите КГ имеют шарнирный подвес, способный компенсировать их кривизну и перекос плит КГ, а стержни A3 состоят из девяти блочков, соединенных шарнирно друг с другом, что уменьшает возможность заклинивания, доводя ее практически до нуля;

• конструкция ТВС исключает при возможных формоизменениях твэлов и других элементов перекрытие проходного сечения проходного сечения ТВС, приводящего к повреждению твэлов сверх установленных пределов, что обеспечивается возможностью компенсации осевого и радиального расширения твэлов и других элементов ТВС, реализующихся в процессе эксплуатации, и исключением азимутальных и аксиальных перемещений как элементов ТВС, так и самой ТВС в целом, путем жесткого закрепления твэлов в районе верхней заглушки к элементам ТВС как по углу, так и в осевом направлении и дистанционированием ТВС в верхней и нижней плитах блока выемного с поджатием ТВС через пружину крышкой реактора;

• материалы, используемые в ТВС и ее элементах, в пределах всего срока службы активной зоны сохраняют удовлетворительные физико-механические свойства, совместимость, а также стойкость против коррозионных, электрохимических, тепловых, механических и радиационных воздействий;

• ТВС и ее элементы имеют конструктивные отличительные признаки, исключающие их ошибочную установку и комплектацию;

Основные характеристики активной зоны приведены в таблице 1.

Таблица 1.

Характеристика

Значение

Номинальная тепловая мощность, МВт

150

Назначенный энергоресурс, 106 МВт-ч

1,8

Назначенный ресурс, ч

30000

Назначенный срок службы, лет

6

Средний тепловой поток с поверхности твэлов, МВт/м2

0,70

Давление теплоносителя I контура, МПа

12,7

Расход теплоносителя I контура, т/ч

2600

Температура теплоносителя I контура, N=Nном., °C

- на входе в активную зону

280

- на выходе из активной зоны

317

Описанный диаметр, мм

1212

Эквивалентный диаметр, мм

1173,7

Высота, мм

920

Число ТВС, шт.

241

Число стержней АЗ, шт

16

Число РО АЗ,

4

Диаметр оболочки стержня A3, наружный/внутренний, мм

19/18

Время сброса РО АЗ, с

0,4

Число ПЭЛ, шт

480

Диаметр оболочки ПЭЛ, наружный/внутренний, мм

13,5/10,3

Число РО КГ, шт

5

 

Приводы ИМ СУЗ

Приводы ИМ СУЗ в составе четырех приводов ИМ A3 и пяти приводов ИМ КГ предназначены для перемещения рабочих органов (РО) СУЗ в активной зоне при осуществлении пуска реактора, регулирования мощности, компенсации избыточной реактивности и остановки реактора.

Привод ИМ A3 обеспечивает:

• подъем и сброс РО A3 с необходимой скоростью:

• удержание РО A3 в верхнем и нижнем положениях;

• сигнализацию о верхнем и нижнем положениях РО A3;

• сигнализацию о течи гильз стержней A3.

Привод ИМ КГ обеспечивает:

• перемещение РО КГ с необходимой скоростью и удержание его в любом положении хода;

• перемещение РО КГ вниз под Действием собственного веса при обесточивании электродвигателя;

• сигнализацию о положении РО КГ;

• стопорение РО КГ от самопроизвольного перемещения вверх;

• возможность ручного перемещения РО КГ.

Привод ИМ КГ (общий вид и кинематическая схема приведены на ри­сунке 13) - электромеханического типа состоит из винтового механизма 1 с датчиками реперных точек 2, редуктора 6, шагового электродвигателя 4, ручного привода 3, датчика положения

Срабатывание привода ИМ A3 (сброс РО A3 в активную зону) происходит при обесточивании электромагнита и не зависит от наличия источника питания.

Удержание РО A3 в нижнем положении и исключение самопроизвольного подъема РО КГ из активной зоны обеспечивается применением в конструкции приводов ИМ АЗ и ИМ КГ роликовых обгонных муфт.

Привод ИМ КГ. Общий вид.

Рис 10. Привод ИМ КГ. Общий вид.

1 – Винтовой механизм; 2 – Датчик реперных точек; 3 – Ручной привод; 4 – Шаговый электродвигатель; 5 – Муфта; 6 – Редуктор.

Первый контур и связанные с ним системы

Существуют два типа связи 1 контура с внешними системами: гидравлическая - с помощью трубопроводов и тепловая - через теплообменные поверхности.

Гидравлически связанные системы обеспечивают организацию нормального технологического процесса по подготовке к работе, работе с выработкой реактором тепла и поддержанием заданных параметров и характеристик 1 контура, а также поддержанием активной зоны под заливом теплоносителя при течи 1 контура.

Системы, связанные с 1 контуром через теплообменные поверхности, входят в комплекс систем охлаждения реактора и оборудования 1 контура.

При межконтурной течи участки этих систем, включая двойную запорную арматуру со стороны теплообменных поверхностей, обеспечивают локализацию радиоактивного теплоносителя 1 контура в заданных границах и рассчитаны на высокое давление.

В состав принципиальной схемы 1 контура и связанных с ним систем, входят в полном объеме или в пределах участков локализации следующие системы:

• основной контур циркуляции (главный циркуляционный контур), назначением которого является получение и перенос тепла от активной зоны к парогенераторам и выработка пара требуемых параметров;

• система очистки и расхолаживания, предназначенная для поддержания показателей качества воды 1 контура и снятия остаточных тепловыделений при расхолаживании;

• система компенсации давления, предназначенная для создания и поддержания давления в 1 контуре;

• система газоудаления, назначением которой является удаление газа из оборудования 1 контура при подготовке к вводу в действие РУ;

• системы отбора проб и дренажа, предназначенные для отбора проб теплоносителя, поддренирования и осушения 1 контура;

• система газа высокого давления, назначением которой является прием, заполнение, сброс и перекачка газа в системе компенсации давления 1 контура;

• система аварийного охлаждения активной зоны, предназначенная для восполнения течи из I контура и охлаждения активной зоны в авариях с потерей теплоносителя;

• система предотвращения переопрессовкн ПГ, назначением которой является исключение возможной переопрессовки отсеченной по 2 контуру трубной системы ПГ за счет надежного соединения отсеченной полости с 1 контуром;

• система водоподготовки и подпитки, предназначенная для подпитки и опрессовки 1 контура в технологических операциях;

• система 2 контура по пару и питательной воде, предназначенная для подачи питательной воды и отвода выработанного в ПГ пара, расхолаживания в нормальных условиях и аварийных режимах, а также для локализации радиоактивного теплоносителя при межконтурной течи;

• система 3 контура, предназначенная для охлаждения оборудования 1 контура и отвода тепла в нормальных и аварийных режимах, а также для локализации радиоактивного теплоносителя при межконтурной течи.

Описание и характеристики систем и элементов 1 контура.

Основной контур циркуляции Рис.5. (парогенерирующий блок) предназначен для преобразования ядерной энергии в тепловую, обеспечения теплосъема с активной зоны и передачи тепла во 2 контур для выработки в ПГ пара требуемых параметров.

Состав основного контура циркуляции:

• реактор;

• четыре парогенератора;

• четыре ЦНПК;

• четыре гидрокамеры. Парогенерирующий блок

Рис.11. Парогенерирующий блок.

Технические характеристики и расчетные параметры основного контура циркуляции при работе на поминальном уровне мощности приведены в таблице 2.

Таблица 2

Наименоваиие параметра, характеристики

Значение

Тепловая мощность, МВт

150

Давление теплоносителя, МПа

12,7

Температура теплоносителя на входе в активную зону, °С

280

Температура теплоносителя на выходе из активной зоны, %

317

Расход теплоносителя, т/ч

2600

Расчетное давление, МПа

16,2

Расчетная температура, °С

350

Уровень естественной циркуляции, % Nhom

(3-5)*

* Обеспечивается расхолаживание РУ через ПГ мри срабатывании аварийной защиты с номинального уровня мощности.

Основной контур циркуляции четырехпетлевого исполнения, чем обеспечивается высокая степень резервирования основного оборудования, и тем самым, высокая надежность теплосъема с активной зоны реактора. Наряду с резервированием петель циркуляции, для надежного теплосъема с активной зоны предусмотрены четыре способа создания циркуляции в основном контуре: за счет работы 1ЦНПК на большой или малой частотах вращения электронасоса расхолаживания, а также за счет естественной циркуляции.

Общая мощность равномерно распределена между четырьмя петлями. При отказе одной или двух петель основной контур циркуляции сохраняет работоспособность при соответственно сниженной мощности.

В случае отказа четырех ЦНПК обеспечено расхолаживание за счет ра­боты электронасоса расхолаживания, а также за счет естественной циркуляции по 1 контуру при подаче воды в ПГ. Теплосъем с активной зоны при атмосфер­ном давлении обеспечен за счет работы электронасоса расхолаживания, а также может производиться через ПГ при естественной циркуляции по 1 контуру.

Вернуться на главную