Другие разделы курса Атомная энергетика. Ядерные реакторы АЭС. Атомный флот

Атомные энергетические установки в корабельной энергетике

Ядерные реакторы на быстрых нейтронах
География размещения БН
Проект БРЕСТ-ОД-300
Проект БРЕСТ-1200
Реактор БР-5 (10), г.Обнинск
Реактор БОР-60, г. Димитровград
Реактор БН-350, г. Шевченко
Реактор БН-600
Реактор БН-800
Проектные решения систем безопасности
АЭС с БН-800
Схемы обращения с РАО на АЭС с БН-800
Реактор БН-1200
Реализация принципа естественной безопасности в проекте БН-1200
ВВЭР
(Водо-Водяной Энергетический Реактор)
АЭС с ВВЭР-440
ВВЭР-1200
ВВЭР-1000
История разработки и сооружения
Конструктивные особенности реактора ВВЭР
Принципиальная тепловая схема
Реактор Большой Мощности Канальный (РБМК)
РБМК-1000 история создания
Устройство реактора РБМК-1000
Концепции безопасности реакторов РБМК
Тепловыделяющая сборка
Атомные станции
Белоярская АЭС
Балаковская АЭС
Балтийская (Калининградская) станция
Ленинградская АЭС
Ленинградская АЭС-2
Белорусская АЭС
Нововоронежская АЭС
Нововоронежская АЭС-2
Ростовская АЭС
Атомная энергетика
Смоленская атомная станция САЭС
Месторасположение Смоленской АЭС
История строительства
Деятельность
Экологическая политика
Экологический контроль
Атомные надводные корабли
Суда с ядерными энергетическими установками в России
Обзор судов с ядерной энергетической установкой
Атомные энергетические установки в корабельной энергетике
Атомная установка на авианосце
Атомный авианосец проекта «Шторм»
Тяжёлые атомные ракетные крейсеры проекта «Орлан»
История создания крейсеров проекта «Орлан»
Вооружение крейсеров проекта «Орлан»
Тяжелый атомный ракетный крейсер «Киров»
Тяжелый атомный крейсер «Петр Великий»
Разведывательный корабль «Урал»
Тяжелый авианесущий крейсер «Ульяновск»
Атомные ледоколы
Действующие ледоколы России
Атомный ледокол "Россия"
Ледоколы класса "Арктика"
Легендарный ледокол «Ленин»
ПЕРСПЕКТИВЫ АТОМНОГО ПРИВОДА
РИТМ-200 реактор для атомного ледокола
Судовая ядерная ППУ ледокола
Реактор ледокола
Корпус реактора
Система компенсации давления
Система газоудаления
Особенности парогенераторов
Второй контур
Реактор атомохода «Ленин»
Реакторы ОК-150
Универсальный двухосадочный атомный ледокол ЛК-60
Гражданские атомные плавсредства
Атомный сухогруз «Фукусима»
Саванна
ТРАНСПОРТНЫЕ СУДА
Рудовоз Otto Hahn («Отто Ган»)
Атомная подводная лодка
Реакторы для подводных лодок
АПЛ проекта 627
Атомная шестиракетная субмарина «К-19»
Ракетный подводный крейсер стратегического назначения
Атомные подлодки типа «Огайо»
АПЛ «Наутилус». США.
Ядерный реактор для авиации
Атомный противолодочный самолет
Создание атомного бомбардировщика
Летающая «утка» М-60/М-30
Атомный самолет М-19
Самолет с ядерным двигателем NB-36H (X6)
Ядерные двигатели
Стратегия США
Летающая атомная лаборатория
лаборатория
ПЛАВУЧИЕ ЭЛЕКТРОСТАНЦИИ
ПАТЭС Академик Ломоносов
Первый в мире плавающий реактор МН-1А
Физика
Основы электротехники
Базовый общетехнический курс
по электротехнике
Общая электротехника
Примеры решения задач по электротехнике
Решение задач по электротехнике
использование MATLAB
Язык программирования MATLAB
Расчет электрических цепей в Simulink
Моделирование цепей переменного ток
Электрические и магнитные цепи
Электротехнические материалы
Физические основы механики
Волновая оптика
Механика
Теория и синтез машин и механизмов
Информатика
Основы Web технологий
Учебник системного администратор
Основы организации персонального компьютера
Основы вычислительных систем
Основы вычислительных комплексов
Информационные системы и сети
Основные понятия об информации
и информатике
Устройство персонального компьютера
Windows
Microsoft Word
Microsoft Excel
Microsoft Access
Введение в локальные вычислительные сети
Интернет
Средства сжатия информации
Основы защиты компьютерной информации
Основы алгоритмизации
Система программирования Турбо Паскаль
Встроенный ассемблер
Turbo Visio
JavaScript
Примеры программирования на Java
Примеры скриптов для клиента на языке JavaScriptScript
Учебник PHP
Паскаль
Графика
Единая система конструкторской документации
Начертательная геометрия
Сопряжение
Курс лекций по начерталке
Практикум по решению задач
Вопросы к экзамену по черчению
Оформление чертежей
Инженерная графика
Машиностроительное черчение
Выполнение чертежей деталей
Виды соединений деталей
Позиционные задачи
Построения центральных проекций
Искусство
Литература и искусство эпохи Возрождения (Ренессанса)
Примеры решения задач по математике
Элементарная математика
Примеры решения задач курсовой
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Курс лекций математического анализа
ТФКП
Типовой расчет по высшей математике
Введение в математический анализ
Определённый интеграл
Замена переменных
Числовые ряды
Правила вычисления неопределенных интегралов
Дифференциальные уравнения
 

 Особенности парогенераторов

Главным конструктором парогенераторов на Балтийском заводе был  Генрих Алиевич Гасанов. В ППУ первого поколения были применены парогенераторы ПГ-13, ПГ-13У, ПГ-14Т. На первых порах пытались рассматривать разные варианты конструкций. Все эти ПГ были  змеевиковыми, прямоточными,  как правило, неремонтопригодными. Первый контур  в трубе, второй в межтрубном пространстве. Фактический ресурс составлял всего 200-500 часов. В силу слабой отработанности технологий серьёзные проблемы были с водным режимом. После эксплуатации в течение нескольких сотен часов «бочки» начинали течь.

 Более совершенные ремонтопригодные парогенераторы  появились на втором и третьем поколениях АПЛ. На втором поколении использовался парогенератор ПГ-ВМ-4Т с первым контуром  в трубе, втором в межтрубном пространстве. В варианте парогенератор ПГ-4Т  второй контур был в трубе, а первый в межтрубном пространстве. Ресурс этих парогенераторов составлял уже 40-50 тыс.часов.

Парогенераторы паропроизводящей установки ОК-650 выполнялись в двух вариантах: на АПЛ  941 проекта остались змеевиковые ПГ. На других проектах стали использовать кассетные прямотрубные ПГ с двойным обогревом рабочего тела, что позволило увеличить ресурс до 50-60 тыс. часов.

От поколения к поколению лодок возрастала и мощность на валу главного турбозубчатого агрегата (ГТЗА).

На первых проектах 627, 675,658 она составляла 2 по 17500 л.с., на 659 проекте 30000 л.с. На лодках второго поколения: на 667 проекте --  2 по 20000 л.с., на 670 проекте --  18000 л.с., на 671 проекте -- 31000 л.с. На 670 проекте впервые в отечественном подводном судостроении была использована одновальная схема ПЛ с одним реактором ВВЭР и одним ГТЗА. Такое же решение было впоследствии применено на 705, 945 и 971 проектах АПЛ.

На лодках третьего поколения 941 и 949 проектов мощность ГТЗА возросла до 2 по 50000 л.с., на 945 проекте -- 47000л.с., на 971 проекте -- 43000 л.с., на 645 проекте -- 35000 л.с.


Активные зоны

Над конструкцией активных зон (АЗ) для корабельных реакторов  работало много коллективов. На первом поколении реакторов использовались следующие типы АЗ: ВМ-А, ВМ-АЦ, ВМ-1А, ВМ-1АМ, ВМ-2А, ВМ-2Аг. На самом деле типов АЗ было гораздо больше. Здесь перечислены далеко не все. Активные зоны реакторов отечественных АПЛ состоят из 248-252 тепловыделяющих сборок в зависимости от типа реактора. Каждая сборка состоит из нескольких десятков топливных элементов. Кампания АЗ увеличивалась от 1,5 до 5 тыс. часов. В качестве топливной композиции использовался UO2, UAl3 , хорошо зарекомендовавший себя и применявшийся впоследствии в АЗ реакторов следующих поколений.  По мере роста мощности реакторов менялось и обогащение ядерного топлива: от 6, 7,5 и 21 % на первом поколении до 36/45 на втором и третьем поколениях, и даже до 90 % обогащения на реакторах с ЖМТ. На третьем поколении АЭУ было применено профилирование активной зоны ядерным топливом и выгорающим поглотителем.

В первоначальных конструкциях АЗ были применены короткостержневые и длинностержневые, потом четырёхкольцевые и двухкольцевые типы ТВЭЛов. На втором поколении использовались стерженьковые и двухкольцевые  ТВЭЛы. Кстати, зона с 2-х кольцевыми ТВЭЛами -  единственная из зон, которая полностью вырабатывала свой энергоресурс. Для третьего поколения были созданы крестообразные ТВЭЛы, имевшие целый ряд преимуществ. Крестообразная конструкция  обеспечивала максимальную площадь обогрева. Кроме того,  закрученный профиль ТВЭЛа позволяет турбулизировать поток теплоносителя, а также использовать принцип самодистанционирования .

На третьем поколении АПЛ,  для того, чтобы  практически при том же объёме получить мощность 190 МВт, потребовалось почти в три раза увеличить энергонапряжённость  АЗ – с 85 до 224 кВт/л.

Свои особенности имели и системы управления защитой (СУЗ) на разных поколениях лодок. Для компенсации реактивности на первом поколении АПЛ устанавливались огромные компенсирующие решётки КР-1. Управлялись они дистанционно или вручную. На втором поколении органы компенсации реактивности были разделены на 2 части - центральную решётку (ЦКР) и периферийные решетки (ПКР) -2(4) (в зависимости от типа реактора). На третьем поколении стержни автоматического регулирования (АР) отсутствуют. Регулирование нейтронной мощности осуществляется за счет температурных эффектов реактивности.

Знание физических основ ядерной энергетики и теплофизики, устройства корабля и АЭУ, опыт эксплуатации материальной части и борьбы за живучесть технических средств, хладнокровие, выдержка, высокие морально-волевые качества, преданность своему делу – вот основные качества подводника-атомщика. А вот в каких условиях ему приходится выполнять свои обязанности.


Если посмотреть на разрез энергетического отсека атомной подводной лодки

Если посмотреть на разрез энергетического отсека атомной подводной лодки, где всё заполнено техникой,  в этом плотнейшем сплетении электрических кабелей, гидравлики и воздуховодов трудно представить себе человека, многие дни, недели и месяцы несущего службу в этих энергонапряжённых, пространственно стеснённых условиях. И, тем не менее, подводники исправно выполняют свою святую обязанность, защищая морские рубежи нашего Отечества.

На главную