Другие разделы курса Атомная энергетика. Ядерные реакторы АЭС. Атомный флот

РИТМ-200 реактор для атомного ледокола

Ядерные реакторы на быстрых нейтронах
География размещения БН
Проект БРЕСТ-ОД-300
Проект БРЕСТ-1200
Реактор БР-5 (10), г.Обнинск
Реактор БОР-60, г. Димитровград
Реактор БН-350, г. Шевченко
Реактор БН-600
Реактор БН-800
Проектные решения систем безопасности
АЭС с БН-800
Схемы обращения с РАО на АЭС с БН-800
Реактор БН-1200
Реализация принципа естественной безопасности в проекте БН-1200
ВВЭР
(Водо-Водяной Энергетический Реактор)
АЭС с ВВЭР-440
ВВЭР-1200
ВВЭР-1000
История разработки и сооружения
Конструктивные особенности реактора ВВЭР
Принципиальная тепловая схема
Реактор Большой Мощности Канальный (РБМК)
РБМК-1000 история создания
Устройство реактора РБМК-1000
Концепции безопасности реакторов РБМК
Тепловыделяющая сборка
Атомные станции
Белоярская АЭС
Балаковская АЭС
Балтийская (Калининградская) станция
Ленинградская АЭС
Ленинградская АЭС-2
Белорусская АЭС
Нововоронежская АЭС
Нововоронежская АЭС-2
Ростовская АЭС
Атомная энергетика
Смоленская атомная станция САЭС
Месторасположение Смоленской АЭС
История строительства
Деятельность
Экологическая политика
Экологический контроль
Атомные надводные корабли
Суда с ядерными энергетическими установками в России
Обзор судов с ядерной энергетической установкой
Атомные энергетические установки в корабельной энергетике
Атомная установка на авианосце
Атомный авианосец проекта «Шторм»
Тяжёлые атомные ракетные крейсеры проекта «Орлан»
История создания крейсеров проекта «Орлан»
Вооружение крейсеров проекта «Орлан»
Тяжелый атомный ракетный крейсер «Киров»
Тяжелый атомный крейсер «Петр Великий»
Разведывательный корабль «Урал»
Тяжелый авианесущий крейсер «Ульяновск»
Атомные ледоколы
Действующие ледоколы России
Атомный ледокол "Россия"
Ледоколы класса "Арктика"
Легендарный ледокол «Ленин»
ПЕРСПЕКТИВЫ АТОМНОГО ПРИВОДА
РИТМ-200 реактор для атомного ледокола
Судовая ядерная ППУ ледокола
Реактор ледокола
Корпус реактора
Система компенсации давления
Система газоудаления
Особенности парогенераторов
Второй контур
Реактор атомохода «Ленин»
Реакторы ОК-150
Универсальный двухосадочный атомный ледокол ЛК-60
Гражданские атомные плавсредства
Атомный сухогруз «Фукусима»
Саванна
ТРАНСПОРТНЫЕ СУДА
Рудовоз Otto Hahn («Отто Ган»)
Атомная подводная лодка
Реакторы для подводных лодок
АПЛ проекта 627
Атомная шестиракетная субмарина «К-19»
Ракетный подводный крейсер стратегического назначения
Атомные подлодки типа «Огайо»
АПЛ «Наутилус». США.
Ядерный реактор для авиации
Атомный противолодочный самолет
Создание атомного бомбардировщика
Летающая «утка» М-60/М-30
Атомный самолет М-19
Самолет с ядерным двигателем NB-36H (X6)
Ядерные двигатели
Стратегия США
Летающая атомная лаборатория
лаборатория
ПЛАВУЧИЕ ЭЛЕКТРОСТАНЦИИ
ПАТЭС Академик Ломоносов
Первый в мире плавающий реактор МН-1А
Физика
Основы электротехники
Базовый общетехнический курс
по электротехнике
Общая электротехника
Примеры решения задач по электротехнике
Решение задач по электротехнике
использование MATLAB
Язык программирования MATLAB
Расчет электрических цепей в Simulink
Моделирование цепей переменного ток
Электрические и магнитные цепи
Электротехнические материалы
Физические основы механики
Волновая оптика
Механика
Теория и синтез машин и механизмов
Информатика
Основы Web технологий
Учебник системного администратор
Основы организации персонального компьютера
Основы вычислительных систем
Основы вычислительных комплексов
Информационные системы и сети
Основные понятия об информации
и информатике
Устройство персонального компьютера
Windows
Microsoft Word
Microsoft Excel
Microsoft Access
Введение в локальные вычислительные сети
Интернет
Средства сжатия информации
Основы защиты компьютерной информации
Основы алгоритмизации
Система программирования Турбо Паскаль
Встроенный ассемблер
Turbo Visio
JavaScript
Примеры программирования на Java
Примеры скриптов для клиента на языке JavaScriptScript
Учебник PHP
Паскаль
Графика
Единая система конструкторской документации
Начертательная геометрия
Сопряжение
Курс лекций по начерталке
Практикум по решению задач
Вопросы к экзамену по черчению
Оформление чертежей
Инженерная графика
Машиностроительное черчение
Выполнение чертежей деталей
Виды соединений деталей
Позиционные задачи
Построения центральных проекций
Искусство
Литература и искусство эпохи Возрождения (Ренессанса)
Примеры решения задач по математике
Элементарная математика
Примеры решения задач курсовой
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Курс лекций математического анализа
ТФКП
Типовой расчет по высшей математике
Введение в математический анализ
Определённый интеграл
Замена переменных
Числовые ряды
Правила вычисления неопределенных интегралов
Дифференциальные уравнения
 

РИТМ-200 — водо-водяной ядерный реактор, разработанный в ОКБМ имени И. И. Африкантова

Два таких реактора будет установлено на новом атомоходе «Арктика», который неделю назад был спущен на воду на Балтийском заводе в Санкт-Петербурге.

Мощность одного реактора РИТМ-200

Мощность одного реактора РИТМ-200 составит около 175 Мегаватт. Поскольку в случае ледоколов говорить об электрической мощности реактора не совсем правильно (корабль во многом использует именно тепло реактора и преобразует энергию полученного пара прямо в мощность на валу), то вместо привычной электрической мощности реактора, которой обычно подразумевают в случае энергетических блоков АЭС, для реактора РИТМ-200 указывается тепловая мощность.

Учитывая, что КПД современных блоков АЭС обычно составляет около 34%, тепловая мощность современного ВВЭР-1000, самого массового российского реактора в эксплуатации, составляет около 3000 МВт, при его чистой, электрической мощности чуть менее или чуть более 1000 МВт, в зависимости от поколения реактора.

Таким образом, показанный на заглавном фото РИТМ-200 где-то в 17 раз меньше ВВЭР-1000 по мощности. Почему же тогда он такой большой?

Вот, если что, готовый корпус ВВЭР-1000 для Тяньваньской АЭС в Китае, в таком же производственном цеху, рядом с такими же рабочими, как и на первой фотографии:

корпус ВВЭР-1000 для Тяньваньской АЭС

Вся хитрость состоит в том, что в реакторе РИТМ-200, который представляет из себя с точки зрения основной конструкции не более, чем «двоюродного брата» энергетического ВВЭР-1000, конструкторы пошли на небольшую хитрость.

РИТМ-200, как и ВВЭР-1000 относится к так называемым легководным или водо-водяным реакторам под давлением, которые де-факто стали сегодня уже стандартом атомной отрасли. ВВЭР, кстати, так и расшифровывается — «водо-водяной энергетический реактор». Двойное поминание воды в названии реактора связано с тем, что наша обычная, «лёгкая» противая вода выступает в такого рода реакторе и замедлителем нейтронов, и основным теплоносителем, позволяя охлаждать активную зону реактора и, с другой стороны, нагревать воду второго контура, которая уже крутит турбину.

В английской транскрипции эта технология реактора называется PWR («реактор с водой под давлением») и тоже описывает его принципиальную конструкцию, просто с иной стороны, физической. Такой подход отличает реакторы ВВЭР/PWR от другого типа легководных реакторов, так называемых «реакторах на кипящей воде» (BWR), в которых вода первого, «грязного» реакторного контура начинает кипеть ещё в корпусе реактора, что во многом упрощает его конструкцию, хотя и за счёт усложнения контуров управления.

В СССР, а потом и в России «кипятильники»-BWR особо не прижились, поэтому и термин «реактор с водой под давлением» стал не настолько популярным.

Вот краткая, весьма упрощённая анимация действия обычного ВВЭР/PWR:

На ней легко можно понять основные этапы технологического цикла такого реактора: реактор нагревает воду первого контура, которая одновременно охлаждает его активную зону, не давая ей расплавиться и повредить конструкцию реактора, вода первого контура, циркулируя по замкнутому циклу без возможности кипения (в силу большого давления) попадает в парогенератор. В парогенераторе, который представляет из себя громадный теплообменник, происходит передача тепла от воды первого контура к воде второго контура, а уже вода второго контура, которая не имеет контакта с активной зоной реактора, крутит лопасти паровой турбины, находящейся на одном валу с электрогенератором.

В силу такого схематического описания, я думаю, некоторые из читателей уже догадались, на какую хитрость пошли разработчики РИТМ-200, инженеры из нижегородского ОКБМ И.И. Африкантова.

Вот она, в схеме-разрезе реактора РИТМ-200:

Вот она, в схеме-разрезе реактора РИТМ-200

Как видите, то что вы, наверное, приняли за корпус реактора — это уже внешняя, вторая оболочка. В корпус РИТМ-200 уже интегрировано четыре парогенератора, которые составляют вместе с активной зоной единый конструктивный модуль.

В этом модуле и происходит основной теплообмен между первым и вторым охлаждающими контурами. При этом вся конструкция — активная зона, парогенераторы, циркуляционные насосы первого контура (ЦНПК) и вся управляющая механика реактора — представляют из себя единое целое, по сути дела, один блок, который изготавливается, собирается, испытуется и настраивается в заводских условиях, после чего его надо просто как кубик LEGO вставить на его штатное место, вовнутрь нового ледокола ЛК-60Я («Арктики») или же, что интересно — нового российского авианосца «Шторм».1

Артика

В такой конструкции активной зоне реактора достаточно трудно расплавиться и вызвать запроектную аварию: по сути дела и активная зона, и парогенераторы второго контура в РИТМ-200 помещены в рамки одной большой «кастрюли» и пока вся вода первого и второго контура не выкипит и реактор не потеряет полностью возможность охлаждения, запроектной аварии не произойдёт. Что, конечно же, очень важно для условий автономного судна в суровых условиях, которому неоткуда ждать быстрой помощи.1

реактор

Такой подход и делает реактор РИТМ-200 похожим по размерам с ВВЭР-1000: для создания безопасной и надёжной конструкции приходится идти на массу ухищрений и дополнительных систем, чтобы обеспечить такие качества у основной конструкции.

При этом, понятное дело, всё это приходится делать в условиях жёсткого экономического прессинга — в отличии от времён Холодной войны между СССР и США нынешний подход у атомной энергетике базируется не только на техническом совершенстве и технологическом изяществе любой ценой, но и на экономическом принуждении: «быть максимально дешёвым».

Каждый из конструкторов и инженеров, таким образом, в деле разработки новых реакторов оказывается в прокрустовом ложе между Сциллой экономических ограничений и Харибдой требований по надёжности и безопасности.

И, как ни печально, самая массовая технология современных реакторов, ВВЭР/PWR уже подошла к пределам в своём эволюционном развитиии.

Лёгководные водо-водяные реакторы под давлением уже не могут дальше протискиваться в это «игольное ушко» сужающихся ограничений.

И это, что радует, вызывает новый виток технологического прогресса — как в реакторных установках для морского транспорта и для военных, так и в больших, энергетических реакторах для целей стационарного генерирования электрической энергии

На главную