Ядерные реакторы технология

Ядерные реакторы Реаторы третьего поколения ВВЭР-1500 Информатика Начертательная геометрия и инженерная графика Теоретическая механика Электротехника Задачи
Графика
Курс лекций для студентов
художественно-графических факультетов
Геометрическое черчение
Начертательная геометрия
Конспект лекций
Практикум решения задач
начертательной геометрии
Машиностроительное черчение
Эскизирование деталей
Правила нанесения размеров
Практическое занятие
Решение метрических задач
Выполнение чертежей
Инженерная графика
База графических примеров
Теория механизмов и машин
Теоретическая механика
Основы технической механики
Сборник задач по математике
Примеры решения задач курсового расчета
Вычислить интеграл
Векторная алгебра и аналитическая геометрия
Тройные и двойные интегралы
Линейная алгебра
Ряд Фурье для четных и нечетных функций
Типовой расчет (задания из Кузнецова)
Вычисление площадей в декартовых координатах
Математический анализ
Информатика
Компьютерные сети
Выделенный канал
Средства анализа и управления сетями
Кабельная система
Базовые технологии локальных сетей
Сетевой уровень
Основы вычислительных систем
Сетевая технология
Мобильный Internet
Руководства по техническому обслуживанию ПК
Руководство по глобальной компьютерной сети
Сборник задач по физике
Физика решение задач
Ядерная физика
Законы теплового излучения
Решение задач по электротехнике
использование MATLAB
Язык программирования MATLAB
Расчет электрических цепей
Моделирование цепей переменного тока
Лекции ТКМ
Электротехнические материалы
Атомная энергетика
Ядерные реакторы
Основы ядерной физики
Использование атомной энергетики
для решения проблем дефицита пресной воды
Проектирование и строительство
атомных энергоблоков
Юбилей Атомной энергетики
Атомные станции с реакторами РБМК 1000
АЭС с реакторами ВВЭР
Реаторы третьего поколения ВВЭР-1500
АЭС с реакторами БН-600
Оборудование атомных станций
Отказы оборудования
Ядерное оружие
Ядерная физика

Ядерные реакторы технология

 

 

Первый ядерный уран-графитовый реактор на тепловых нейтронах был построен в 1942 в США под руководством Э.Ферми. В СССР аналогичный реактор был построен в 1946 под руководством И.В. Курчатова.

Кипящие реакторы по исполнению могут быть корпусными и канальными

Канальный кипящий графитовый реактор, РБМК Реактор работает на тепловых нейтронах, в качестве теплоносителя используется обычная вода (гетерогенный реактор).

Основные технические характеристики РБМК следующие. В самом общем виде реактор представляет собой цилиндр составленный из графитовых блоков, помещенный в бетонную шахту. Диаметр, этого цилиндра, около 12 м, а высота около 8 м. Реактор окружен боковой биологической защитой в виде кольцевого бака с водой. Этот цилиндр пронизывают 1693 топливных канала, представляющих собой трубки из сплава циркония диаметром 88 мм и толщиной 4 мм. В топливном канале устанавливается тепловыделяющая сборка (ТВС). Активная зона реактора - вертикальный цилиндр диаметром 11.8 метров и высотой 7 метров. По периферии активной зоны, а также сверху и снизу расположен боковой отражатель -сплошная графитовая кладка толщиной 0.65 метра

Реактор размещен в бетонной шахте размером 21,6*21,6*25,5 м. Сверху и снизу расположены специальные плиты, обеспечивающими биологическую защиту (во время работы реактора, по его крышке («пятаку» реактора) можно ходить

Тепловыделяющая сборка (ТВС) и технологический канал - раздельные узлы -индивидуальные тракты подвода и отвода теплоносителя

Характерная особенность канальных реакторов - возможность регулирования и контроля расхода теплоносителя по каждому каналу.

Теплоноситель, вода, движется в каналах с низу в верх, омывая ТВС и снимая тепловую энергию. Подвод теплоносителя осуществляется к каждому каналу, существует возможность регулировать расход воды через канал.

Второй тепловой контур. Барабан сепаратор, забирая тепловую энергию вместе с паром из первого контура, где он является потребителем, отдает ее во второй контур. Следовательно, он является источником тепловой энергии для второго теплового контура. Развитие ядерной индустрии в СССР

Водо-водяной реатор, ВВЭР

Реакторы водо-водяного типа с обычной («легкой») водой под давлением нашли широкое развитие в России. Весьма привлекательны дешевизна используемого в них теплоносителя-замедлителя  и относительная безопасность в эксплуатации, несмотря на необходимость использования в этих реакторах обогащенного урана. Реактор ВВЭР-1000 представляет собой второе поколение легководных реакторов большой мощности.

Электрическая мощность энергоблоков составляет 1000 МВт. В энергетических реакторах корпусного типа ВВЭР (водо-водяной энергетический реактор) в качестве замедлителя нейтронов  и теплоносителя используется обычная вода (гетерогенный реактор). Активная зона помещается в один общий корпус, через который прокачивается вода

В корпусном кипящем реакторе активная зонаразмещена в высокопрочном, толстостенном стальном баке

Твелы реактора собирают в тепловыделяющие сборки

Начнем с анализа наиболее принципиальных различий: ВВЭР — корпусной реактор (давление держится корпусом реактора); РБМК-- канальный реактор (давление держится независимо в каждом канале); в ВВЭР теплоноситель и замедлитель — одна и та же вода (дополнительный замедлитель не вводится), в РБМК замедлитель — графит, а теплоноситель — вода; в ВВЭР пар образуется во втором корпусе парогенератора, в РБМК пар образуется в непосредственно в активной зоне реактора (кипящий реактор) и прямо идет на турбину — нет второго контура.

Реакторы на быстрых нейтронах

В США венгерским ученым Л.Сцилардом в январе 1943 была высказана идея о расширенном воспроизводстве ядерного горючего. Первый промышленный бридер — экспериментальный реактор (тепловая мощность 0,2 МВт) был введен в действие 20.12.1951 в ядерном центре в Айдахо, США.

Переход к серийному сооружению АЭС с БН осложнен многими неотработанными в промышленном масштабе технологическими процессами и нерешенными вопросами оптимальной организации ядерного топливного цикла, который должен базироваться на плутонии и может быть только замкнутым с очень коротким (до 1 года) временем внешнего цикла (химическая переработка отработавшего топлива и дистанционно управляемое изготовление свежего топлива).

Ядерный реактор БН-600 выполнен с «интегральной» компоновкой оборудования, при которой активная зона и оборудование первого контура (главные циркуляционные насосы и промежуточные теплообменники) размещены в корпусе реактора

Активная зона БН окружена в радиальном и осевом направлениях зонами воспроизводства (бланкетом), заполненными воспроизводящим материалом — обедненным ураном, содержащим 99,7 - 99,8 % 238U

Сравнение различных типов энергетических ядерных реакторов

Промышленные реакторы В СССР промышленные (военные) уран-графитовые реакторы с высокими потоками тепловых нейтронов использовались для наработки оружейного плутония и других делящихся нуклидов. Попутно решались ещё две задачи: получение электроэнергии и снабжение теплом близлежащие населенные пункты (В США военные реакторы применяли исключительно для наработки оружейного плутония).

Время удвоения - время,  в течение которого количество делящегося материала, первоначально загруженного в реактор, удваивается в процессе расширенного воспроизводства).

  Графитовые тепловые реакторы Исторически первыми промышленными реакторами – наработчиками плутония – были канальные реакторы на тепловых нейтронах с графитовым замедлителем и прямым проточным водным охлаждением (Аналогом такого реактора является реактор энергетический РБМК, чернобыльского типа).

Легководные реакторы Существуют и промышленные реакторы – наработчики плутония, функционирующие на обычной воде (правда глубоко очищенной от примесей). Примером может служить реактор «Руслан», пущенный на «Маяке» в 1985.

Исследовательские ядерные реакторы Под исследовательским реактором подразумевается ядерный реактор. предназначенный для получения и использования нейтронов и ионизирующего излучения в исследовательских и других целях, для чего на нем могут применятся экспериментальные устройства.

В российских (советских) реакторах использовалось топливо трех различных поколений. Степень обогащения повышалась, чтобы достигнуть большей мощности и больших потоков нейтронов.

Исследовательские реакторы мощностью до 20 МВт, предназначенные для физических исследований, учебных целей и производства радиоактивных изотопов.

Реактор БОР-60 – опытный реактор на быстрых нейтронах, смонтированный в Институте атомных реакторов (г. Димитровград, 1969). Реактор является уникальной многоцелевой установкой, предназначенной для решения проблем реакторов на быстрых нейтронах с натриевым теплоносителем и ядерных энергетических установок других типов, в том числе с термоядерными реакторами, а также для проведения исследований, необходимых в различных областях науки и техники.

Активная зона реактора объемом около 50 л помещена в тяжеловодный отражатель и представляет собой компактный интенсивный источник нейтронов деления мощностью 100 МВт.

Деаэратор - устройство, предназначенное для удаления растворенных в воде кислорода и агрессивных газов (СО2, НNО3 и др.), способствующих интенсивной коррозии стенок парогенераторов, трубопроводов, теплообменников и прочего оборудования АЭС.

Система контроля целостноститехнологических каналов (КЦТК) - осуществляет контроль влажности и температуры в области между кладкой и технологическими каналами (ТК) реактора РБМК. При обнаружении аварии реактор останавливают и заменяют аварийный канал.

Аварийная защита настолько эффективна, что в случае аварии полностью глушит реактор и, в отличие от предыдущего поколения реакторов, поддерживает его в заглушенном состоянии без применения растворов борной кислоты.