Курс физики технического университета

Сборник задач по физике
Физическая оптика
Ядерная физика
На главную
Физика твердого тела
Физические основы механики
Волновая оптика
Молекулярная физика
Теоретическая механика
Теория и синтез машин
Электротехника
Карта сайта

Типовой расчет по высшей математике

Числовые ряды. Основные определения.

 Определение. Сумма членов бесконечной числовой последовательности  называется числовым рядом.

При этом числа  будем называть членами ряда, а un – общим членом ряда.

 Определение. Суммы , n = 1, 2, … называются частными (частичными) суммами ряда.

 Таким образом, возможно рассматривать последовательности частичных сумм ряда S1, S2, …,Sn, …

 Определение. Ряд  называется сходящимся, если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

 Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

22.2. Свойства рядов.

 

 1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

 2) Рассмотрим два ряда  и , где С – постоянное число.

 Теорема. Если ряд сходится и его сумма равна S, то ряд тоже сходится, и его сумма равна СS. (C ¹ 0)

 3) Рассмотрим два ряда и . Суммой или разностью этих рядов будет называться ряд , где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

 Теорема. Если ряды и сходятся и их суммы равны соответственно S и s, то ряд  тоже сходится и его сумма равна S + s.

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

 При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

22.3. Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

 Для того, чтобы последовательность была сходящейся, необходимо и достаточно, чтобы для любого  существовал такой номер N, что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

.

 Доказательство. (необходимость)

Пусть , тогда для любого числа найдется номер N такой, что неравенство

 выполняется при n>N. При n>N и любом целом p>0 выполняется также неравенство . Учитывая оба неравенства, получаем:

Необходимость доказана. Доказательство достаточности рассматривать не будем.

 Сформулируем критерий Коши для ряда.

 Для того, чтобы ряд был сходящимся необходимо и достаточно, чтобы для любого  существовал номер N такой, что при n>N и любом p>0 выполнялось бы неравенство

.

 Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому как правило используются более простые признаки сходимости:

 1) Если ряд сходится, то необходимо, чтобы общий член un стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится. Например, так называемый гармонический ряд  является расходящимся, хотя его общий член и стремится к нулю.

 Пример. Исследовать сходимость ряда

Найдем  - необходимый признак сходимости не выполняется, значит ряд расходится.

 2) Если ряд сходится, то последовательность его частных сумм ограничена.

Однако, этот признак также не является достаточным.

Например, ряд 1-1+1-1+1-1+ … +(-1)n+1+… расходится, т.к. расходится последовательность его частных сумм в силу того, что

 Однако, при этом последовательность частных сумм ограничена, т.к.   при любом n.

22.4. Ряды с неотрицательными членами.

 При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

 Теорема. Для сходимости ряда с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены.

Лекция 23. Сходимость рядов.

23.1. Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда  и  при un, vn ³ 0.

 

 Теорема. Если un £ vn при любом n, то из сходимости ряда следует сходимость ряда , а из расходимости ряда следует расходимость ряда .

 

 Доказательство. Обозначим через Sn и sn частные суммы рядов  и . Т.к. по условию теоремы ряд сходится, то его частные суммы ограничены, т.е. при всех n sn < M, где М – некоторое число. Но т.к. un £ vn, то Sn £ sn то частные суммы ряда тоже ограничены, а этого достаточно для сходимости.

 Пример. Исследовать на сходимость ряд

Т.к. , а гармонический ряд  расходится, то расходится и ряд .

 Пример. Исследовать на сходимость ряд

Т.к. , а ряд   сходится ( как убывающая геометрическая прогрессия), то ряд  тоже сходится.

 Также используется следующий признак сходимости:

Теорема. Если  и существует предел , где h – число, отличное от нуля, то ряды  и ведут одинаково в смысле сходимости.

23.2. Признак Даламбера.

(Жан Лерон Даламбер (1717 – 1783) – французский математик)

 Если для ряда  с положительными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

то ряд  сходится, если же для всех достаточно больших n выполняется условие

то ряд  расходится.

23.3. Предельный признак Даламбера.

 Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.

 Если существует предел , то при r < 1 ряд сходится, а при r > 1 – расходится. Если r = 1, то на вопрос о сходимости ответить нельзя.

 

 Пример. Определить сходимость ряда .

Вывод: ряд сходится.

 Пример. Определить сходимость ряда

Вывод: ряд сходится.

23.4. Признак Коши. (радикальный признак)

 Если для ряда с неотрицательными членами существует такое число q<1, что для всех достаточно больших n выполняется неравенство

,

то ряд сходится, если же для всех достаточно больших n выполняется неравенство

то ряд расходится.

 Следствие. Если существует предел , то при r<1 ряд сходится, а при r>1 ряд расходится.

 Пример. Определить сходимость ряда .

Вывод: ряд сходится.

 Пример. Определить сходимость ряда .

Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.

,

таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.

23.5. Интегральный признак Коши.

 Если j(х) – непрерывная положительная функция, убывающая на промежутке [1;¥), то ряд j(1) + j(2) + …+ j(n) + … =  и несобственный интеграл  одинаковы в смысле сходимости.

 Пример. Ряд  сходится при a>1 и расходится a£1 т.к. соответствующий несобственный интеграл  сходится при a>1 и расходится a£1. Ряд  называется общегармоническим рядом.

 Следствие. Если f(x) и j(х) – непрерывные функции на интервале (a, b] и  то интегралы  и  ведут себя одинаково в смысле сходимости.

Знакопеременные ряды. Признак Лейбница. Знакочередующийся ряд можно записать в виде: ьгде

Степенные ряды. Понятие степенного ряда. На практике часто применяется разложение функций в степенной ряд. Определение. Степенным рядом называется ряд вида

. Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Первообразная, неопределенный интеграл и простейшие способы нахождения Определение. Функция F(х) называется точной первообразной для функции f(x) на (a, b), если F¢(x) = f(x), x Î (a, b), или, что то же самое, f(x) dx служит дифференциалом для F(x): dF(x) = f(x) d


На главную