Вычислить интеграл Интегрирование рациональных функций Примеры курсового расчета Повторные интегралы Вычислить криволинейный интеграл Физические приложения тройных интегралов Вычислить поверхностный интеграл Поверхностные интегралы

Примеры решения задач курсового расчета, контрольной работы по математике

В данном разделе мы рассмотрим 8 специальных классов интегралов от тригонометрических функций. Для каждого класса применяются определенные преобразования и подстановки, позволяющие получить аналитическое решение.

1. Интегралы вида Для решения данных интегралов применяются формулы преобразования произведения тригонометрические функций в сумму или разность: 2. Интегралы вида Здесь и везде ниже предполагается, что m и n - натуральные числа. Для вычисления таких интегралов используются следующие подстановки и преобразования:
  1. Если степень косинуса n - нечетная (при этом степень синуса m может быть любой), то используется подстановка .
  2. Если степень синуса m - нечетная, то используется подстановка .
  3. Если степени m и n - четные, то сначала применяются формулы двойного угла чтобы понизить синуса или косинуса в подынтегральном выражении. Затем, если необходимо, применяются правила a) или b).
3. Интегралы вида Степень подынтегрального выражения в данном интеграле можно понизить с помошью тригонометрического соотношения и формулы редукции 4. Интегралы вида Здесь степень подынтегрального выражения понижается с помошью соотношения и формулы редукции 5. Интегралы вида Данный тип интеграла упрощается с помощью следующей формулы редукции: 6. Интегралы вида Аналогично предыдущим пунктам, интеграл упрощается с помощью формулы 7. Интегралы вида
  1. Если степень секанса n - четная, то c помошью соотношения секанс выражается через тангенс. При этом множитель отделяется и используется для преобразования дифференциала. В результате весь интеграл (включая дифференциал) выражается через функцию tg x.
  2. Если обе степени n и m - нечетные, то отделяется множитель sec x tg x, необходимый для преобразования дифференциала. Далее весь интеграл выражается через sec x.
  3. Если степень секанса n - нечетная, а степень тангенса m - четная, то тангенс выражается через секанс с помощью формулы . Затем вычисляются интегралы от секанса.
8. Интегралы вида
  1. Если степень косеканса n - четная, то c помошью соотношения косеканс выражается через котангенс. При этом множитель отделяется и используется для преобразования дифференциала. В результате подынтегральная функция и дифференциал выражаются через ctg x.
  2. Если обе степени n и m - нечетные, то отделяется множитель ctg x cosec x, необходимый для преобразования дифференциала. Далее интеграл выражается через cosec x.
  3. Если степень косеканса n - нечетная, а степень котангенса m - четная, то котангенс выражается через косеканс с помощью формулы . Далее вычисляются интегралы от косеканса.
На главную сайта Dvoika.net