Атомная энергетика. Ядерные реакторы АЭС. Атомный флот. Ядерное оружие

Атомные станции
Реактор БН-800
ВВЭР-1000
РБМК-1000
Ледоколы
Подлодки
Флот
Гражданский суда
Ядерное оружие
Ядерная физика
Плавучие АЭС
Авиация

Высшая математика

1 семестр
2 семестр
3 семестр
Задачи
Интеграл
Курсовая
Контрольная
Практикум
Алгебра
Матанализ
Геометрия
Карта сайта

 

 

В школе изучались уравнения линий на плоскости. В пространстве мы будем пользоваться уравнениями поверхностей и линий. Уточним сейчас, что такое уравнение поверхности.

Определение 11.1 Пусть в пространстве задана некоторая система координат и поверхность $ S$ . Будем говорить, что уравнение, связывающее три упорядоченные переменные, является уравнением поверхности $ S$ в заданной системе координат, если координаты любой точки поверхности $ S$ удовлетворяют этому уравнению, а координаты любой точки, не лежащей на поверхности $ S$ , этому уравнению не удовлетворяют.

Вместо слов "координаты точки удовлетворяют уравнению" иногда будем говорить "точка удовлетворяет уравнению".

Если мы изменим систему координат, то, как правило, изменится и уравнение поверхности.

Если уравнение достаточно сложное, то удовлетворяющие ему точки могут образовывать не только поверхность, но и другие множества, например, линию, одну точку, пару линий. Есть такие уравнения, которым не удовлетворяет ни одна точка пространства. Например, ни одна точка с координатами $ (x;y;z)$ не удовлетворяет уравнению $ {x^2+y^2+z^2=-1}$ .

В определении сказано, что уравнение должно связывать три переменных, но по записи уравнения не всегда можно определить, сколько переменных оно связывает. Например, уравнение $ x+y=0$ можно рассматривать как уравнение прямой на плоскости, но можно это же уравнение записать в виде $ x+y+0\cdot z=0$ , и тогда оно будет определять поверхность в пространстве (плоскость, как станет известно дальше). Поэтому кроме самого уравнения должна быть задана информация о том, в пространстве какой размерности находится определяемое этим уравнением множество точек.

Одна и та же поверхность может задаваться разными уравнениями. Например, если в уравнении поверхности $ S$ в правой части стоит нуль: $ {F(x,y,z)=0}$ , то обе части уравнения можно возвести в квадрат и получить $ {(F(x,y,z))^2=0}$ . Новое уравнение будет являться уравнением той же самой поверхности $ S$ , хотя будет выглядеть по другому. Естественно, что когда говорят об уравнении поверхности, то из всех уравнений этой поверхности стараются выбрать наиболее "простое". Вычислить интеграл . Решение. Для того, чтобы вычислить данный интеграл, воспользуемся основной тригонометрической заменой:


Задача 7 (МАИ).

 В треугольной  пирамиде SABC все ребра имеют одинаковую длину, равную l . На ребре SA взята точка М так, что SM =, на ребре SB взята точка N, а на плоскости ABC взята точка Р. Найдите наименьшую величину суммы длин отрезков MN и NP. 

Решение.

Длина отрезка NP минимальна, если Р — проекция точки N на плоскость ABC. Очевидно, что Р принадлежит медиане BE правильного треугольника ABC (рис. 8). Теперь нужно найти кратчайшее расстояние от данной точки М до прямой BE по поверхности двугранного угла, образованного плоскостями ABS и BSE. Это все равно, что найти расстояние от точки до прямой на плоской развертке этого двугранного угла.

Рассмотрим такую развертку. Для этого в плоскости SBE построим треугольник SA1В, равный треугольнику ASB (рис. 9). На стороне SA1 отметим точку M1, в которую при раз- разворачивании двугранного угла пере- переходит точка М, так что SM1=. Как известно, кратчайшее расстояние от точки до прямой есть перпендикуляр, опущенный из данной точки на данную прямую. Поэтому проведем М1P1  BE. Очевидно, что сумма
MN+NP=M1N+NP минимальна тогда и только тогда, когда Р=Р1 и N = Q. Осталось выяснить, чему равна длина отрезка М1Р1.

Проведем SK  M1P1. Пусть KSB =SBE = α. Высота SO пирамиды равна . Тогда M1P1 = M1K+SO=.

Выразив sin α и cos α из треугольников SBE и SBO, получим ответ:

 

 Ответ:

На главную сайта Примеры решения задач по математике, выполнение контрольной курсовой