Другие разделы курса математики технического университета

Матрицы, Определение, обозначения и типы матриц

Примеры решения задач по математике
Элементарная математика
Примеры решения задач курсовой
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Курс лекций математического анализа
ТФКП
Типовой расчет по высшей математике
Введение в математический анализ
Определённый интеграл
Замена переменных
Числовые ряды
Правила вычисления неопределенных интегралов
Дифференциальные уравнения
Контрольная работа
Линия и плоскость в пространстве
Пределы
Непрерывность функций и точки разрыва
Производные и дифференцирование функции
Формула Тейлора
Исследование функций и построение графиков
Приближённое нахождение корней уравнений
Векторная алгебра
Линия и плоскость в пространстве
Кривые и поверхности второго порядка
Матрицы
Линейные пространства
Комплексные числа
Свойства дифференцируемых функций
 
 

 

Функции и их графики Всюду в тексте учебника мы будем использовать общепринятые обозначения, те, что используются и в школьных учебниках. В частности,
$ \mathbb{R}$ означает числовую прямую (множество всех вещественных чисел);
$ \mathbb{N}$ означает множество натуральных чисел $ \{1;2;3;4;\dots\}$;
$ \mathbb{Z}$ означает множество всех целых чисел $ \{\dots;-3;-2;-1;0;1;2;3;\dots\}$;

Пределы Пусть задана некоторая меняющаяся величина $ y$, зависящая от переменного $ x$. Предположим, что это переменное $ x$ можно менять так, что выполняется некоторое условие $ \mathcal{B}$: переменное "приближается" ("стремится") к чему-нибудь (что это означает, мы уточним позже при помощи строгих определений). Тогда встаёт вопрос о том, не ведёт ли себя величина $ y$ каким-либо "правильным" образом, тоже "стремясь" к чему-нибудь, например, к числу $ L$. Если это так, то это "что-то" называется пределом величины $ y$ при данном условии $ \mathcal{B}$ для $ x$ и обозначается

$\displaystyle \lim_{\mathcal{B}}y.$

Дадим теперь строгие определения предела в некоторых частных случаях, а потом перейдём к обсуждению общего определения.

Непрерывность функций и точки разрыва

Определение Пусть функция $ f(x)$ определена на некотором интервале $ (a;b)$, для которого $ x_0$-- внутренняя точка. Функция $ f(x)$ называется непрерывной в точке $ x_0$, если существует предел $ f(x)$ при $ x\to x_0$ и этот предел равен значению $ f(x_0)$, то есть
$\displaystyle \lim_{x\to x_0}f(x)=f(x_0).$

Производные и дифференцирование функции Итак, согласно предыдущим двум определениям, производная $ f'(x_0)$ функции $ f(x)$ в точке $ x_0$, правая производная $ f'_+(x_0)$ и левая производная $ f'_-(x_0)$ задаются, соответственно, формулами \begin{subequations}\begin{gather}
 f'(x_0)=\lim_{h\to0}\dfrac{f(x_0+h)-f(x_0)}{...
..._-(x_0)=\lim_{h\to0-}\dfrac{f(x_0+h)-f(x_0)}{h},
 \end{gather}\end{subequations}

Формула Тейлора представления числовой функции многочленом Многочлен $ P(x)$, наиболее подходящий (с некоторой точки зрения) для этой цели, называется многочленом Тейлора для данной функции; найдя его по заданной функции $ f(x)$, мы сможем вместо сложного вычисления значений функции $ f(x)$ приближённо заменять это вычисление на вычисление значений многочлена $ P(x)$.

Исследование функций и построение графиков Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные.

Приближённое нахождение корней уравнений

     Определение Пусть кривая $ L$ задана как график функции $ y=f(x)$ и $ M_0(x_0;f(x_0))$ -- некоторая точка этой кривой. Будем предполагать, что функция $ f(x)$ дифференцируема в некоторой окрестности точки $ x_0$, так что при $ x$ из этой окрестности к графику $ y=f(x)$ можно проводить касательные, составляющие угол $ {\alpha}(x)$ с осью $ Ox$.
Кривизной кривой $ L$ в точке $ M_0$ (или при $ x=x_0$) называется число $\displaystyle k(x_0)=\left\vert\lim_{x\to x_0}\dfrac{{\Delta}{\alpha}}{{\Delta}l}\right\vert,$

Векторная алгебра В этом разделе мы вспомним известные из школьного курса математики операции сложения векторов и умножения вектора на число, а также свойства этих операций.

Линия и плоскость в пространстве Определения и примеры Определение Пусть в пространстве задана некоторая система координат и поверхность $ S$ . Будем говорить, что уравнение, связывающее три упорядоченные переменные, является уравнением поверхности $ S$ в заданной системе координат, если координаты любой точки поверхности $ S$ удовлетворяют этому уравнению, а координаты любой точки, не лежащей на поверхности $ S$ , этому уравнению не удовлетворяют.

Кривые и поверхности второго порядка Определение  Кривой второго порядка называется множество точек, координаты которых удовлетворяют уравнению второго порядка $\displaystyle ax^2+bxy+cy^2+dx+fy+g=0,$

  

Линейные пространства уравнения      Определение 15.1   Системой $ m$ линейных уравнений с $ n$ неизвестными называется система уравнений вида $\displaystyle \left\{\begin{array}{l}a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=b_1,\...
...ots\ldots\ldots\\ 
 a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n=b_m.\end{array}\right.$

Комплексные числа  Определение   Числа вида $ a+bi$ , где $ a$ и $ b$  -- вещественные числа, называются комплексными числами.    

Свойства дифференцируемых функций В этом разделе мы рассмотрим некоторые утверждения, касающиеся функций, которые во всех точках данного множества имеют производную. Такие функции называются дифференцируемыми на данном множестве.

11. Найти предел .

— получили неопределенность. Применяем правило еще раз. ;

12. Исследовать функцию и построить ее график.

Находим область существования функции. Очевидно, что областью определения функции является область (–¥;–1) È (–1; 1) È (1; ¥).

В свою очередь, видно, что прямые х = 1, х = –1 являются вертикальными асимптотами кривой.

Областью значений данной функции является интервал (–¥; ¥).

Точками разрыва функции являются точки х = 1, х = –1.

Находим критические точки.

Найдем производную функции

Критические точки: x = 0; x = –; x = ; x = –1; x = 1.

Найдем вторую производную функции

.

Определим выпуклость и вогнутость кривой на промежутках.

-¥ < x < –, y¢¢ < 0, кривая выпуклая;

< x < –1, y¢¢ < 0, кривая выпуклая;

–1 < x < 0, y¢¢ > 0, кривая вогнутая;

 0 < x < 1, y¢¢ < 0, кривая выпуклая;

 1 < x < , y¢¢ > 0, кривая вогнутая;

   < x < ¥, y¢¢ > 0, кривая вогнутая;

Находим промежутки возрастания и убывания функции. Для этого определяем знаки производной функции на промежутках.

¥ < x < –, y¢ > 0, функция возрастает

< x < -1, y¢ < 0, функция убывает

–1 < x < 0, y¢ < 0, функция убывает

  0 < x < 1, y¢ < 0, функция убывает

 1 < x < , y¢ < 0, функция убывает

  < x < ¥, y¢¢ > 0, функция возрастает

Видно, что точка х = – является точкой максимума, а точка х =  является точкой минимума. Значения функции в этих точках равны соответственно –3/2 и 3/2.

Про вертикальные асимптоты было уже сказано выше. Теперь найдем наклонные асимптоты.

Итого, уравнение наклонной асимптоты – y = x.

Построим график функции:

 

На главную сайта Примеры решения задач по математике, выполнение контрольной курсовой