Другие разделы курса математики технического университета

Задачи
Практикум
Карта сайта

Линейные пространства уравнения Алгебраические структуры

Примеры решения задач по математике
Элементарная математика
Примеры решения задач курсовой
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Курс лекций математического анализа
ТФКП
Типовой расчет по высшей математике
Введение в математический анализ
Определённый интеграл
Замена переменных
Числовые ряды
Правила вычисления неопределенных интегралов
Дифференциальные уравнения
Контрольная работа
Линия и плоскость в пространстве
Пределы
Непрерывность функций и точки разрыва
Производные и дифференцирование функции
Формула Тейлора
Исследование функций и построение графиков
Приближённое нахождение корней уравнений
Векторная алгебра
Линия и плоскость в пространстве
Кривые и поверхности второго порядка
Матрицы
Линейные пространства
Комплексные числа
Свойства дифференцируемых функций
 
 

 

Системы линейных уравнений

     Определение 15.1   Системой $ m$ линейных уравнений с $ n$ неизвестными называется система уравнений вида $\displaystyle \left\{\begin{array}{l}a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=b_1,\...
...ots\ldots\ldots\\ 
 a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n=b_m.\end{array}\right.$

Многомерные пространства

Линейные преобразования

Функции и их графики Всюду в тексте учебника мы будем использовать общепринятые обозначения, те, что используются и в школьных учебниках. В частности,
$ \mathbb{R}$ означает числовую прямую (множество всех вещественных чисел);
$ \mathbb{N}$ означает множество натуральных чисел $ \{1;2;3;4;\dots\}$;
$ \mathbb{Z}$ означает множество всех целых чисел $ \{\dots;-3;-2;-1;0;1;2;3;\dots\}$;

Пределы Пусть задана некоторая меняющаяся величина $ y$, зависящая от переменного $ x$. Предположим, что это переменное $ x$ можно менять так, что выполняется некоторое условие $ \mathcal{B}$: переменное "приближается" ("стремится") к чему-нибудь (что это означает, мы уточним позже при помощи строгих определений). Тогда встаёт вопрос о том, не ведёт ли себя величина $ y$ каким-либо "правильным" образом, тоже "стремясь" к чему-нибудь, например, к числу $ L$. Если это так, то это "что-то" называется пределом величины $ y$ при данном условии $ \mathcal{B}$ для $ x$ и обозначается

$\displaystyle \lim_{\mathcal{B}}y.$

Дадим теперь строгие определения предела в некоторых частных случаях, а потом перейдём к обсуждению общего определения.

Непрерывность функций и точки разрыва

Определение Пусть функция $ f(x)$ определена на некотором интервале $ (a;b)$, для которого $ x_0$-- внутренняя точка. Функция $ f(x)$ называется непрерывной в точке $ x_0$, если существует предел $ f(x)$ при $ x\to x_0$ и этот предел равен значению $ f(x_0)$, то есть
$\displaystyle \lim_{x\to x_0}f(x)=f(x_0).$

Производные и дифференцирование функции Итак, согласно предыдущим двум определениям, производная $ f'(x_0)$ функции $ f(x)$ в точке $ x_0$, правая производная $ f'_+(x_0)$ и левая производная $ f'_-(x_0)$ задаются, соответственно, формулами \begin{subequations}\begin{gather}
 f'(x_0)=\lim_{h\to0}\dfrac{f(x_0+h)-f(x_0)}{...
..._-(x_0)=\lim_{h\to0-}\dfrac{f(x_0+h)-f(x_0)}{h},
 \end{gather}\end{subequations}

Формула Тейлора представления числовой функции многочленом Многочлен $ P(x)$, наиболее подходящий (с некоторой точки зрения) для этой цели, называется многочленом Тейлора для данной функции; найдя его по заданной функции $ f(x)$, мы сможем вместо сложного вычисления значений функции $ f(x)$ приближённо заменять это вычисление на вычисление значений многочлена $ P(x)$.

Исследование функций и построение графиков Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные.

Приближённое нахождение корней уравнений

     Определение Пусть кривая $ L$ задана как график функции $ y=f(x)$ и $ M_0(x_0;f(x_0))$ -- некоторая точка этой кривой. Будем предполагать, что функция $ f(x)$ дифференцируема в некоторой окрестности точки $ x_0$, так что при $ x$ из этой окрестности к графику $ y=f(x)$ можно проводить касательные, составляющие угол $ {\alpha}(x)$ с осью $ Ox$.
Кривизной кривой $ L$ в точке $ M_0$ (или при $ x=x_0$) называется число $\displaystyle k(x_0)=\left\vert\lim_{x\to x_0}\dfrac{{\Delta}{\alpha}}{{\Delta}l}\right\vert,$

Векторная алгебра В этом разделе мы вспомним известные из школьного курса математики операции сложения векторов и умножения вектора на число, а также свойства этих операций.

Линия и плоскость в пространстве Определения и примеры Определение Пусть в пространстве задана некоторая система координат и поверхность $ S$ . Будем говорить, что уравнение, связывающее три упорядоченные переменные, является уравнением поверхности $ S$ в заданной системе координат, если координаты любой точки поверхности $ S$ удовлетворяют этому уравнению, а координаты любой точки, не лежащей на поверхности $ S$ , этому уравнению не удовлетворяют.

Кривые и поверхности второго порядка Определение  Кривой второго порядка называется множество точек, координаты которых удовлетворяют уравнению второго порядка $\displaystyle ax^2+bxy+cy^2+dx+fy+g=0,$

Определение, обозначения и типы матриц

Определение Матрицей размеров $ m\times n$ называется прямоугольная таблица чисел, содержащая $ m$ строк и $ n$ столбцов. Числа, составляющие матрицу, называются элементами матрицы.      

 

Комплексные числа  Определение   Числа вида $ a+bi$ , где $ a$ и $ b$  -- вещественные числа, называются комплексными числами.    

Свойства дифференцируемых функций В этом разделе мы рассмотрим некоторые утверждения, касающиеся функций, которые во всех точках данного множества имеют производную. Такие функции называются дифференцируемыми на данном множестве.

Интеграл вида , если

функция R является нечетной относительно cosx.

 

Несмотря на возможность вычисления такого интеграла с помощью универсальной тригонометрической подстановки, рациональнее применить подстановку t = sinx.

Функция  может содержать cosx только в четных степенях, а следовательно, может быть преобразована в рациональную функцию относительно sinx.

23.

Вообще говоря, для применения этого метода необходима только нечетность функции относительно косинуса, а степень синуса, входящего в функцию может быть любой, как целой, так и дробной.

 

Интеграл вида ,

если функция R является нечетной относительно sinx.

По аналогии с рассмотренным выше случаем делается подстановка t = cosx.

Тогда

[an error occurred while processing this directive]
На главную сайта Примеры решения задач по математике, выполнение контрольной курсовой