Другие разделы курса математики технического университета

Задачи
Практикум
Карта сайта

Формула Тейлора представления числовой функции многочленом

Примеры решения задач по математике
Элементарная математика
Примеры решения задач курсовой
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Курс лекций математического анализа
ТФКП
Типовой расчет по высшей математике
Введение в математический анализ
Определённый интеграл
Замена переменных
Числовые ряды
Правила вычисления неопределенных интегралов
Дифференциальные уравнения
Контрольная работа
Линия и плоскость в пространстве
Пределы
Непрерывность функций и точки разрыва
Производные и дифференцирование функции
Формула Тейлора
Исследование функций и построение графиков
Приближённое нахождение корней уравнений
Векторная алгебра
Линия и плоскость в пространстве
Кривые и поверхности второго порядка
Матрицы
Линейные пространства
Комплексные числа
Свойства дифференцируемых функций
 
 

Многочлен Тейлора

Коэффициенты Тейлора

Остаток в формуле Тейлора и его оценка

Остаток в формуле Тейлора в форме Лагранжа

Формула Тейлора для некоторых элементарных функций

Формула Тейлора для экспоненты такова: $\displaystyle e^x=1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\ldots+\frac{x^n}{n!}+R_n(x).$

Получаем формулу Тейлора для синуса: $\displaystyle \sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+\ldots+
(-1)^{k-1}\dfrac{x^{2k-1}}{(2k-1)!}+R_{2k}(x).$

Упражнение

Примеры

        Пример   Рассмотрим функцию $ f(x)=xe^{x^2}$. Найдём её разложение по формуле Тейлора в точке $ x_0=0$. Начнём с того, что напишем ранее найденное разложение для экспоненты,
$\displaystyle e^z=1+z+\frac{z^2}{2!}+\frac{z^3}{3!}+\ldots+\frac{z^n}{n!}+R_n(z),$
и положим в нём $ z=x^2$:
$\displaystyle e^{x^2}=1+x^2+\frac{x^4}{2!}+\frac{x^6}{3!}+\ldots+\frac{x^{2n}}{n!}+R_n(x^2).
$
Теперь умножим левую и правую части этой формулы на $ x$:
$\displaystyle xe^{x^2}=x+x^3+\frac{x^5}{2!}+\frac{x^7}{3!}+\ldots+\frac{x^{2n+1}}{n!}
+xR_n(x^2).$
Заметим, что бесконечно малое при $ x\to0$ выражение $ \tilde R(x)=xR_n(x^2)$ имеет тот же или больший порядок малости, как $ x^{2(n+1)+1}=x^{2n+3}$, и поэтому может рассматриваться как остаточный член $ R_{2n+2}(x)$ в формуле Тейлора для $ f(x)$, а предыдущие слагаемые в правой части формулы -- как многочлен Тейлора данной функции. Так что её искомое разложение найдено.     

Разберём теперь пример того, как полученные разложения элементарных функций можно использовать для раскрытия некоторых неопределённостей.

        Пример   Найдём предел
$\displaystyle \lim_{x\to0}\dfrac{e^x-1-x}{\sqrt{1-x}-\cos\sqrt{x}}.$
Для начала найдём разложение по формуле Тейлора в точке 0 для числителя:
$\displaystyle e^x-1-x=-1-x+1+x+\frac{x^2}{2}+r_3(x)=
\frac{x^2}{2}+r_3(x),$
где через $ r_3(x)$ обозначен остаточный член, имеющий тот же порядок малости, что и $ x^3$. Разложение для знаменателя имеет вид:
$\displaystyle \sqrt{1-x}-\cos\sqrt{x}=(1-\frac{x}{2}-\frac{x^2}{8}+s_3(x))-
(1-\frac{x}{2}-\frac{x^2}{24}+t_3(x)),$
где остаточные члены $ s_3(x)$ и $ t_3(x)$ тоже имеют тот же порядок малости, что и $ x^3$, при $ x\to0$. Выполняя приведение подобных членов, получаем, что знаменатель равен
$\displaystyle -(\frac{1}{8}+\frac{1}{24})x^2+s_3(x)-t_3(x).$
Итак,
$\displaystyle \lim_{x\to0}\dfrac{e^x-1-x}{\sqrt{1-x}-\cos\sqrt{x}}=
 \lim_{x\to0}\dfrac{\frac{x^2}{2}+r_3(x)}
 {-(\frac{1}{8}+\frac{1}{24})x^2+s_3(x)-t_3(x)}=$   
$\displaystyle =\lim_{x\to0}\dfrac{\frac{1}{2}+\frac{r_3(x)}{x^2}}
 {-(\frac{1}{...
...rac{s_3(x)-t_3(x)}{x^2}}=
 \dfrac{\frac{1}{2}}{-(\frac{1}{8}+\frac{1}{24})}=-3.$   

Функции и их графики Всюду в тексте учебника мы будем использовать общепринятые обозначения, те, что используются и в школьных учебниках. В частности,
$ \mathbb{R}$ означает числовую прямую (множество всех вещественных чисел);
$ \mathbb{N}$ означает множество натуральных чисел $ \{1;2;3;4;\dots\}$;
$ \mathbb{Z}$ означает множество всех целых чисел $ \{\dots;-3;-2;-1;0;1;2;3;\dots\}$;

Пределы Пусть задана некоторая меняющаяся величина $ y$, зависящая от переменного $ x$. Предположим, что это переменное $ x$ можно менять так, что выполняется некоторое условие $ \mathcal{B}$: переменное "приближается" ("стремится") к чему-нибудь (что это означает, мы уточним позже при помощи строгих определений). Тогда встаёт вопрос о том, не ведёт ли себя величина $ y$ каким-либо "правильным" образом, тоже "стремясь" к чему-нибудь, например, к числу $ L$. Если это так, то это "что-то" называется пределом величины $ y$ при данном условии $ \mathcal{B}$ для $ x$ и обозначается

$\displaystyle \lim_{\mathcal{B}}y.$

Дадим теперь строгие определения предела в некоторых частных случаях, а потом перейдём к обсуждению общего определения.

Непрерывность функций и точки разрыва

Определение Пусть функция $ f(x)$ определена на некотором интервале $ (a;b)$, для которого $ x_0$-- внутренняя точка. Функция $ f(x)$ называется непрерывной в точке $ x_0$, если существует предел $ f(x)$ при $ x\to x_0$ и этот предел равен значению $ f(x_0)$, то есть
$\displaystyle \lim_{x\to x_0}f(x)=f(x_0).$

Производные и дифференцирование функции Итак, согласно предыдущим двум определениям, производная $ f'(x_0)$ функции $ f(x)$ в точке $ x_0$, правая производная $ f'_+(x_0)$ и левая производная $ f'_-(x_0)$ задаются, соответственно, формулами \begin{subequations}\begin{gather}
 f'(x_0)=\lim_{h\to0}\dfrac{f(x_0+h)-f(x_0)}{...
..._-(x_0)=\lim_{h\to0-}\dfrac{f(x_0+h)-f(x_0)}{h},
 \end{gather}\end{subequations}

 

Исследование функций и построение графиков Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные.

Приближённое нахождение корней уравнений

     Определение Пусть кривая $ L$ задана как график функции $ y=f(x)$ и $ M_0(x_0;f(x_0))$ -- некоторая точка этой кривой. Будем предполагать, что функция $ f(x)$ дифференцируема в некоторой окрестности точки $ x_0$, так что при $ x$ из этой окрестности к графику $ y=f(x)$ можно проводить касательные, составляющие угол $ {\alpha}(x)$ с осью $ Ox$.
Кривизной кривой $ L$ в точке $ M_0$ (или при $ x=x_0$) называется число $\displaystyle k(x_0)=\left\vert\lim_{x\to x_0}\dfrac{{\Delta}{\alpha}}{{\Delta}l}\right\vert,$

Векторная алгебра В этом разделе мы вспомним известные из школьного курса математики операции сложения векторов и умножения вектора на число, а также свойства этих операций.

Линия и плоскость в пространстве Определения и примеры Определение Пусть в пространстве задана некоторая система координат и поверхность $ S$ . Будем говорить, что уравнение, связывающее три упорядоченные переменные, является уравнением поверхности $ S$ в заданной системе координат, если координаты любой точки поверхности $ S$ удовлетворяют этому уравнению, а координаты любой точки, не лежащей на поверхности $ S$ , этому уравнению не удовлетворяют.

Кривые и поверхности второго порядка Определение  Кривой второго порядка называется множество точек, координаты которых удовлетворяют уравнению второго порядка $\displaystyle ax^2+bxy+cy^2+dx+fy+g=0,$

Определение, обозначения и типы матриц

Определение Матрицей размеров $ m\times n$ называется прямоугольная таблица чисел, содержащая $ m$ строк и $ n$ столбцов. Числа, составляющие матрицу, называются элементами матрицы.      

Линейные пространства уравнения      Определение 15.1   Системой $ m$ линейных уравнений с $ n$ неизвестными называется система уравнений вида $\displaystyle \left\{\begin{array}{l}a_{11}x_1+a_{12}x_2+\ldots+a_{1n}x_n=b_1,\...
...ots\ldots\ldots\\ 
 a_{m1}x_1+a_{m2}x_2+\ldots+a_{mn}x_n=b_m.\end{array}\right.$

Комплексные числа  Определение   Числа вида $ a+bi$ , где $ a$ и $ b$  -- вещественные числа, называются комплексными числами.    

Свойства дифференцируемых функций В этом разделе мы рассмотрим некоторые утверждения, касающиеся функций, которые во всех точках данного множества имеют производную. Такие функции называются дифференцируемыми на данном множестве.

Доказать, что функция  непрерывна в точке  (найти ): .

Решение. Покажем, что при любом  найдется такое , что  при .

. Покажем, как для произвольного положительного действительного числа , найти такое положительное число , что , если .

Так как  и нас интересует поведение функции в окрестности точки , то, не нарушая общности, будем считать, что рассматриваются только точки х такие, что . Тогда , а . Поэтому, для рассматриваемых х справедливы соотношения

.

Но, если  (то есть ), то и . Пусть . Тогда, если , то . Значит функция  непрерывна в точке

9. Вычислить предел функции: .

Решение. Так как пределы числителя и знаменателя при  равны нулю, то мы имеем неопределенность вида . "Раскроем" эту неопределенность, разложив числитель и знаменатель на множители и сократив их далее на общий множитель  (сокращать на  можно, потому что при нахождении предела мы считаем, что  ):

.

В полученной дроби знаменатель уже не стремится к нулю при , поэтому можно применять теорему о пределе частного:

. Ответ:

10. Вычислить предел функции: .

Решение. Здесь мы имеем неопределенность вида . Умножим числитель и знаменатель дроби на выражение, сопряженное к числителю (избавляемся от иррациональности в числителе):

Ответ: .

На главную сайта Примеры решения задач по математике, выполнение контрольной курсовой