Другие разделы курса математики технического университета

Задачи
Практикум
Карта сайта

Примеры решения задач по математике за 1 семестр

Линейная алгебра

Основные определения

Операция умножения матриц

примеры

Определители ( детерминанты)

примеры

Элементарные преобразования

Cвойства обратных матриц

Базисный минор матрицы. Ранг матрицы.

Матричный метод решения систем линейных уравнений

Метод Крамера

примеры

Решение произвольных систем линейных уравнений

Элементарные преобразования систем

Метод Гаусса

Элементы векторной алгебры

Определение

Линейная зависимость векторов

примеры

Линейные операции над векторами в координатах

примеры

Векторное произведение векторов

примеры

Смешанное произведение векторов

Уравнение поверхности в пространстве

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости

Уравнение плоскости в отрезках

примеры

Аналитическая геометрия

Уравнение линии на плоскости

Уравнение прямой по точке и вектору нормали

Уравнение прямой по точке и направляющему вектору

Нормальное уравнение прямой

Угол между прямыми на плоскости

примеры

Кривые второго порядка.

Гипербола

Пример

Парабола

Системы координат

Полярная система координат

Уравнение кривой в полярной системе координат

Цилиндрическая и сферическая системы координат

Аналитическая геометрия в пространстве

Параметрическое уравнение прямой

Уравнение прямой в пространстве, проходящей через две точки

 Пример. Найти каноническое уравнение, если прямая задана в виде:

Угол между плоскостями.

Условия параллельности и перпендикулярности прямых в пространстве

Линейное (векторное) пространство

Свойства линейных пространств

Примеры

Матрицы линейных преобразований

Примеры

Условия параллельности и перпендикулярности прямой и плоскости в пространстве

Собственные значения и собственные векторы линейного преобразования

Рассмотрим частный случай.

Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А = .

Пример

Квадратичные формы

Привести к каноническому виду квадратичную форму Ф(х1, х2) = 27.

Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка.

На главную