.

Математика примеры решения задач Математический анализ, векторная алгебра

Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам: A×B = C; .  Из приведенного определения видно, что операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй. Свойства операции умножения матриц. 1)Умножение матриц не коммутативно, т.е. АВ ¹ ВА даже если определены оба произведения. Однако, если для каких – либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными. Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера. Перестановочными могут быть только квадратные матрицы одного и того же порядка.

А×Е = Е×А = А   Очевидно, что для любых матриц выполняются следующее свойство: A×O = OO×A = O, где О – нулевая матрица.  2) Операция перемножения матриц ассоциативна, т.е. если определены произведения АВ и (АВ)С, то определены ВС и А(ВС), и выполняется равенство: (АВ)С=А(ВС).  3) Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения А(В+С) и (А+В)С, то соответственно:

А(В + С) = АВ + АС

(А + В)С = АС + ВС.  4) Если произведение АВ определено, то для любого числа a верно соотношение: a(AB) = (aA)B = A(aB).  5) Если определено произведение АВ , то определено произведение ВТАТ и выполняется равенство: (АВ)Т = ВТАТ, где индексом Т обозначается транспонированная матрица.   6) Заметим также, что для любых квадратных матриц det (AB) = detA×detB. Что такое det будет рассмотрено ниже.   

Определение. Матрицу В называют транспонированной матрицей А, а переход от А к В транспонированием, если элементы каждой строки матрицы А записать в том же порядке в столбцы матрицы В. А = ; В = АТ=; другими словами, bji = aij.  В качестве следствия из предыдущего свойства (5) можно записать, что: (ABC)T = CTBTAT, при условии, что определено произведение матриц АВС.  

 

Числовые ряды. Основные понятия. Сходимость ряда. §2. Ряды с положительными слагаемыми. Признаки сходимости. §3. Ряды с членами произвольного знака. Достаточный признак сходимости знакопеременного ряда. Признак Лейбница. Вычисление погрешности при приближенном вычислении суммы сходящегося знакочередующегося ряда. Представление о скорости сходимости ряда.

На главную