.

Математика примеры решения задач Математический анализ, векторная алгебра

  Как и на плоскости, в пространстве положение любой точки может быть определено тремя координатами в различных системах координат, отличных от декартовой прямоугольной системы. Цилиндрическая и сферическая системы координат являются обобщением для пространства полярной системы координат, которая была подробно рассмотрена выше.

  Введем в пространстве точку О и луч l, выходящий из точки О, а также вектор . Через точку О можно провести единственную плоскость, перпендикулярную вектору нормали .

Для введения соответствия между цилиндрической, сферической и декартовой прямоугольной системами координат точку О совмещяют с началом декартовой прямоугольной системы координат, луч l – с положительным направлением оси х, вектор нормали – с осью z.

Цилиндрическая и сферическая системы координат используются в тех случаях, когда уравнение кривой или поверхности в декартовой прямоугольной системе координат выглядят достаточно сложно, и операции с таким уравнением представляются трудоемкими.

Представление уравнений в цилиндрической и сферической системе позволяет значительно упростить вычисления, что будет показано.

  z

 

 

 

 

 

 

 

 ОМ1 = r; MM1 = h;

 Если из точки М опустить перпендикуляр ММ1 на плоскость, то точка М1 будет иметь на плоскости полярные координаты (r, q).

 

Определение. Цилиндрическими координатами точки М называются числа (r, q, h), которые определяют положение точки М в пространстве.

 

Определение. Сферическими координатами точки М называются числа (r,j,q), где j - угол между r и нормалью.

 

Связь цилиндрической и декартовой прямоугольной системами координат.

 

 

  Аналогично полярной системе координат на плоскости можно записать соотношения, связывающие между собой различные системы координат в пространстве. Для цилиндрической и декартовой прямоугольной систем эти соотношения имеют вид:

 

  h = z; x = rcosq; y = rsinq; cosq = ; sinq = .

 

Связь сферической системы координат с декартовой прямоугольной.

 

  В случае сферической системы координат соотношения имеют вид:

 

 

Дифференциальное исчисление функций одной переменной. Глава 3. §1. Производная функция в точке, ее геометрический смысл, уравнение касательной к графику функции. Экономический смысл производной, эластичность функции. §2. Схема вычисления производной. Производная суммы, произведения, частного. §3. Сложные функции. Теорема о производной сложной функции. Таблица производных.
На главную