Векторная алгебра
Пределы
Практикум

Математика примеры решения задач Математический анализ, векторная алгебра

 

  Определение. Предел функции f(x) при х®а, где а- число, равен бесконечности, если для любого числа М>0 существует такое число D>0, что неравенство

ïf(x)ï>M

выполняется при всех х, удовлетворяющих условию

0 < ïx - aï < D

 

Записывается .

Собственно, если в приведенном выше определении заменить условие ïf(x)ï>M на f(x)>M, то получим:

а если заменить на f(x)<M, то:

Графически приведенные выше случаи можно проиллюстрировать следующим образом:

 

 

 

 

 


  Определение. Функция называется бесконечно большой при х®а, где а – чосли или одна из величин ¥, +¥ или -¥, если , где А – число или одна из величин ¥, +¥ или -¥.

 

  Связь бесконечно больших и бесконечно малых функций осуществляется в соответствии со следующей теоремой.

 

  Теорема. Если f(x)®0 при х®а (если х®¥ ) и не обращается в ноль, то

Приложения дифференциального исчисления. §1. Вычисления пределов по правилу Лопиталя. §2. Экстремум функции. Схема исследования функции на экстремум. Второе достаточное условие экстремума (теорема). Наименьшее и наибольшее значения функции на заданном отрезке. §3. Характер выпуклости графика функции, точки перегиба. Необходимое условие перегиба
На главную сайта Примеры решения задач по математике, выполнение контрольной курсовой