Другие разделы курса математики технического университета

Задачи
Практикум
Карта сайта

Контрольная по математике. Методические указания

Ядерные реакторы на быстрых нейтронах
География размещения БН
Проект БРЕСТ-ОД-300
Проект БРЕСТ-1200
Реактор БР-5 (10), г.Обнинск
Реактор БОР-60, г. Димитровград
Реактор БН-350, г. Шевченко
Реактор БН-600
Реактор БН-800
Проектные решения систем безопасности
АЭС с БН-800
Схемы обращения с РАО на АЭС с БН-800
Реактор БН-1200
Реализация принципа естественной безопасности в проекте БН-1200
ВВЭР
(Водо-Водяной Энергетический Реактор)
АЭС с ВВЭР-440
ВВЭР-1200
ВВЭР-1000
История разработки и сооружения
Конструктивные особенности реактора ВВЭР
Принципиальная тепловая схема
Реактор Большой Мощности Канальный (РБМК)
РБМК-1000 история создания
Устройство реактора РБМК-1000
Концепции безопасности реакторов РБМК
Тепловыделяющая сборка
Атомные станции
Белоярская АЭС
Балаковская АЭС
Балтийская (Калининградская) станция
Ленинградская АЭС
Ленинградская АЭС-2
Белорусская АЭС
Нововоронежская АЭС
Нововоронежская АЭС-2
Ростовская АЭС
Атомная энергетика
Смоленская атомная станция САЭС
Месторасположение Смоленской АЭС
История строительства
Деятельность
Экологическая политика
Экологический контроль
Атомные надводные корабли
Суда с ядерными энергетическими установками в России
Обзор судов с ядерной энергетической установкой
Атомные энергетические установки в корабельной энергетике
Атомная установка на авианосце
Атомный авианосец проекта «Шторм»
Тяжёлые атомные ракетные крейсеры проекта «Орлан»
История создания крейсеров проекта «Орлан»
Вооружение крейсеров проекта «Орлан»
Тяжелый атомный ракетный крейсер «Киров»
Тяжелый атомный крейсер «Петр Великий»
Разведывательный корабль «Урал»
Тяжелый авианесущий крейсер «Ульяновск»
Атомные ледоколы
Действующие ледоколы России
Атомный ледокол "Россия"
Ледоколы класса "Арктика"
Легендарный ледокол «Ленин»
ПЕРСПЕКТИВЫ АТОМНОГО ПРИВОДА
РИТМ-200 реактор для атомного ледокола
Судовая ядерная ППУ ледокола
Реактор ледокола
Корпус реактора
Система компенсации давления
Система газоудаления
Особенности парогенераторов
Второй контур
Реактор атомохода «Ленин»
Реакторы ОК-150
Универсальный двухосадочный атомный ледокол ЛК-60
Гражданские атомные плавсредства
Атомный сухогруз «Фукусима»
Саванна
ТРАНСПОРТНЫЕ СУДА
Рудовоз Otto Hahn («Отто Ган»)
Атомная подводная лодка
Реакторы для подводных лодок
АПЛ проекта 627
Атомная шестиракетная субмарина «К-19»
Ракетный подводный крейсер стратегического назначения
Атомные подлодки типа «Огайо»
АПЛ «Наутилус». США.
Ядерный реактор для авиации
Атомный противолодочный самолет
Создание атомного бомбардировщика
Летающая «утка» М-60/М-30
Атомный самолет М-19
Самолет с ядерным двигателем NB-36H (X6)
Ядерные двигатели
Стратегия США
Летающая атомная лаборатория
лаборатория
ПЛАВУЧИЕ ЭЛЕКТРОСТАНЦИИ
ПАТЭС Академик Ломоносов
Первый в мире плавающий реактор МН-1А
Физика
Основы электротехники
Базовый общетехнический курс
по электротехнике
Общая электротехника
Примеры решения задач по электротехнике
Решение задач по электротехнике
использование MATLAB
Язык программирования MATLAB
Расчет электрических цепей в Simulink
Моделирование цепей переменного ток
Электрические и магнитные цепи
Электротехнические материалы
Физические основы механики
Волновая оптика
Механика
Теория и синтез машин и механизмов
Информатика
Основы Web технологий
Учебник системного администратор
Основы организации персонального компьютера
Основы вычислительных систем
Основы вычислительных комплексов
Информационные системы и сети
Основные понятия об информации
и информатике
Устройство персонального компьютера
Windows
Microsoft Word
Microsoft Excel
Microsoft Access
Введение в локальные вычислительные сети
Интернет
Средства сжатия информации
Основы защиты компьютерной информации
Основы алгоритмизации
Система программирования Турбо Паскаль
Встроенный ассемблер
Turbo Visio
JavaScript
Примеры программирования на Java
Примеры скриптов для клиента на языке JavaScriptScript
Учебник PHP
Паскаль
Графика
Единая система конструкторской документации
Начертательная геометрия
Сопряжение
Курс лекций по начерталке
Практикум по решению задач
Вопросы к экзамену по черчению
Оформление чертежей
Инженерная графика
Машиностроительное черчение
Выполнение чертежей деталей
Виды соединений деталей
Позиционные задачи
Построения центральных проекций
Искусство
Литература и искусство эпохи Возрождения (Ренессанса)
Примеры решения задач по математике
Элементарная математика
Примеры решения задач курсовой
Кратные интегралы
Векторный анализ
Аналитическая геометрия
Курс лекций математического анализа
ТФКП
Типовой расчет по высшей математике
Введение в математический анализ
Определённый интеграл
Замена переменных
Числовые ряды
Правила вычисления неопределенных интегралов
Дифференциальные уравнения
 

Контрольная работа №2

Некоторые приложения двойных интегралов

Тройной интеграл

При помощи тройного интеграла можно вычислить массу тела, его статические моменты относительно координатных плоскостей и другие величины

Криволинейный интеграл II рода (по координатам)

Векторная функция скалярного аргумента

Векторное поле Поток векторного поля через поверхность

Соленоидальное векторное поле

Задача. Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Задача. Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1,

Задача. Поверхность задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Задача. Дано плоское скалярное поле U = x2 –2y, точка М0(1,–1) и вектор . Найти градиент поля в точке M0 и производную  в точке M0 по направлению вектора ;

Задача. Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i.

Решение примерного варианта контрольной работы

Задача. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Задача. Задан радиус-вектор движущейся точки: . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Задача. Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

Функция нескольких переменных и ее частные производные

Полное приращение и полный дифференциал ФНП Полным приращением функции двух переменных z= f (xy) в точке (xy), вызванным приращениями аргументов  и , называется выражение .

Производные ФНП высших порядков

Частные производные ФНП, заданной неявно Если каждой паре чисел (x, y) из некоторой области DxOyсоответствует одно или несколько значений z, удовлетворяющих уравнению , то это уравнение неявно определяет функцию 2-х переменных, например, функцию . Скалярное поле. Градиент. Производная по направлению Говорят, что в двумерной области D xOyзадано скалярное поле, если в каждой точке M(x, y) Î Dзадана скалярная функция координат точки: U(M) = U(x, y).

Функции комплексной переменной

Некоторые приложения тройных интегралов

Векторная функция скалярного аргумента Если каждому значению параметра tиз некоторого промежутка  ставится в соответствие по некоторому правилу определенный вектор, то говорят, что задана вектор-функция скалярного аргумента t: .

Векторное поле Поток векторного поля через поверхность

Формула Остроградского-Гаусса. Дивергенция Формула Остроградского-Гаусса устанавливает связь между интегралом по замкнутой поверхности σ  в направлении ее «внешней» нормали и тройным интегралом по области V, ограниченной этой поверхностью

Задача Дана функция z= cos2 (2xy).

Задача. Найти частные производные  и , если переменные x, y, и z связаны равенством 

Дана функция двух переменных: z = x2xy + y2 – 4x+ 2y + 5 и уравнения границ замкнутой области D на плоскости xОy:x = 0, y = –1, x + y = 3. 

Задача Поверхность задана уравнением z =  + xy – 5 x3 . Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0 , y0 , z0 ), принадлежащей ей, если x0 = –1, y0 = 2.

Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i.

Задача. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Задача Вычислить работу силы  при перемещении точки приложения силы вдоль заданной кривой L:  от точки B до точки C, если значения параметра t в точках B и C заданы: .

Дано векторное поле  и уравнение плоскости d: 3x + y + 2z – 3 = 0.

Задача Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точкуN(–1,2,3).

Пример Найти произведение матриц А=  и В = .

Решение. Имеем: матрица А размера 2´3, матрица В размера 3´3, тогда произведение АВ = С существует и элементы матрицы С равны
с11 = 1×1 +2×2 + 1×3 = 8, с21 = 3×1 + 1×2 + 0×3 = 5, с12 = 1×2 + 2×0 + 1×5 = 7,

Вычислить определитель D = , разложив его по элементам второго столбца.

Решение. Разложим определитель по элементам второго столбца:

Методом элементарных преобразований найти обратную матрицу для матрицы: А= .

Метод Гаусса

Кривые второго порядка: гипербола, парабола Гиперболой называется геометрическое место точек, разность расстояний которых от двух данных фиксированных точек (фокусов) гиперболы есть одна и та же постоянная величина. Предполагается, что эта постоянная величина не равна нулю и меньше, чем расстояние между фокусами.

Полярная система координат. Переход от полярных координат к декартовым и обратно. Построение кривой, определяемой уравнением в полярных координатах В полярной системе координат основными постоянными элементами, по отношению к которым определяется положение точки на плоскости, является точка O - полюс и ось OP, которая называется полярной осью.

Основные задачи на прямую в пространстве Прямая линия в пространстве. Основные формулы: Канонические уравнения прямой линии в пространстве, или уравнения прямой с направляющими коэффициентами, имеют вид (1) ьгде x0, y0, z0 - координаты точки, через которую проходит прямая, а m, n и p - направляющие коэффициенты прямой, которые являются проекциями на координатные оси Ox, Oy, Oz направляющего вектора прямой.

Метод подведения под знак дифференциала Пусть требуется вычислить Предположим, что существуют дифференцируемые функции и , такие, что тогда Указанное преобразование подынтегрального выражения называют подведением под знак дифференциала.

Метод подстановки (замена переменной интегрирования)

Метод интегрирования по частям

Среди корней знаменателя правильной рациональной дроби имеются комплексные корни, то есть разложение знаменателя содержит множители вида Пример Вычислить интеграл

Задача . Изменить порядок интегрирования.

Полярная система координат:

Задача. Найти объем тела, заданного ограничивающими его поверхностями.ь

Задача. Исследовать ряд на сходимость.

Задача. Найти сумму ряда.

Найти решение задачи Коши.

Задача. Найти общее решение дифференциального уравнения.

Найти неопределенные интегралы.  

Задача. Вычислить определенные интегралы

Вычислить объемы тел, ограниченных поверхностями.

Вычислить пределы функций.

Найти момент инерции однородной круглой пластинки (x – a)2 + (y – b)2 < 4b2 относительно начала координат.

Геометрические и физические приложения Длина кривой. Если подынтегральная функция f(x, y, z) ≡ 1, то из определения криволинейного интеграла 1-го рода получаем, что в этом случае он равен длине кривой, по которой ведется интегрирование:

Вычислить циркуляцию векторного поля  по контуру Г, состоящему из частей линий   (направление обхода положительно).

Непосредственное интегрирование. Пример Найти . В простейших примерах применяется метод непосредственного интегрирования, то есть используются свойства и таблицы интегралов. А именно, при помощи тождественных преобразований подынтегрального выражения исходный интеграл сводится к табличному интегралу или к сумме табличных интегралов.

Следующая задача посвящена вычислению определённого интеграла, например: Пример. Вычислить определенный интеграл 

Решение: Определенный интеграл от любой непрерывный функции f(x) вычисляется по формуле Ньютона-Лейбница где F(x) – первообразная для f(x).

Разберём задачу вычислении приближённого значения определённых интегралов по формуле Симпсона. Рассмотрим пример. Вычислить приближенное значение определенного интеграла  с помощью формулы Симпсона, положив n=4. ьФормула Симпсона приближенного интегрирования позволяет численно определить значение интеграла без нахождения первообразной. Для этого достаточно вычислить значение функции в n=4 точках, полученных в результате разбиения отрезка   на n отрезков (n – четное число)   шаг разбиения   значение подынтегральной функции на концах отрезков.

Следующая задача об экстремумах функций двух переменных и об отыскании наибольших и наименьших значений функции двух независимых переменных. Функция ограниченная и дифференцируемая в замкнутой области достигает в этой области своего наибольшего и наименьшего значения или во внутренних точках этой области, которые являются точками стационарности функции или на её границе

Следующая задача посвящена нахождению вектора – градиента для функции нескольких переменных. вектор-градиент обозначается grad u или Ñu.

Вычислить двойной интеграл. По области D: y=x2, y=2-x2. Область D изобразить на чертеже.ь Решение: Изобразим область D. Кривые, задающие область D представляют собой параболы. Составив из их уравнений систему и решив её, найдём точки их пересечения.

Пример.  Вычислить с помощью тройного интеграла объём тела, ограниченного поверхностями z=0, z=4-y2, x2=2y.

На главную