.
Предел функции Производная функции Тройные и двойные интегралы Примеры курсового расчета Векторная алгебра Аналитическая геометрия Производные Дифференцируемость функций Комплексные числа задачи Матрицы

Примеры решения задач курсового расчета, контрольной работы по математике

Неопределенный интеграл.

Пример 1. Найти неопределенный интеграл, значит вспомнить таблицу производных , свойства неопределенного интеграла, свойства дифференциала, сообразить как выглядит первообразная. и записать совокупность первообразных

Интегрирование или нахождение неопределенного интеграла связано с нахождением первообразной функции. Для некоторых подынтегральных функций это достаточно сложная задача. Ниже будут рассмотрены способы нахождения неопределенных интегралов для основных классов функций – рациональных, иррациональных, тригонометрических, показательных и др.

 Для удобства, значения неопределенных интегралов большинства основных элементарных функций собраны в специальные таблицы интегралов, которые бывают иногда весьма объемными. В них включены различные наиболее часто встречающиеся комбинации функций. Но большинство представленных в этих таблицах формул являются следствиями друг друга, поэтому ниже приведем таблицу основных интегралов, с помощью которой можно получить значения неопределенных интегралов различных функций. Таблица неопределенных интегралов является прямым следствием таблицы производных основных элементарных функций, правил дифференцирования и свойств дифференциала. Знание  и умение пользоваться этими понятиями необходимо для освоения темы.

 

Таблица основных неопределенных интегралов

 Интеграл

 Первообразная

 Интеграл

 Первообразная 

1

 -

9

 ex + C

2

 

 

10

 sinx + C

3

 

11

 -cosx + C

4

 

12

 tgx + C

5

13

 -ctgx + C

6

ln

14

 arcsin + C

7

 ln½cosx½+C

15

8

 ln½sinx½+ C 

16

 

 Непосредственное интегрирование.

 Рассмотрим применение этого метода на примере:

Требуется найти значение интеграла . На основе известной формулы дифференцирования  можно сделать вывод, что искомый интеграл равен , где С – некоторое постоянное число. Однако, с другой стороны . Таким образом, окончательно можно сделать вывод:

 Заметим, что в отличие от дифференцирования, где для нахождения производной использовались четкие приемы и методы, правила нахождения производной, наконец, определение производной, для интегрирования такие методы недоступны. Если при нахождении производной мы пользовались, так сказать, конструктивными методами, которые, базируясь на определенных правилах, приводили к результату, то при нахождении первообразной приходится в основном опираться на знания таблиц производных и неопределенных интегралов.

 Что касается метода непосредственного интегрирования, то он применим только для некоторых весьма ограниченных классов функций. Функций, для которых можно с ходу найти первообразную очень мало. Поэтому в большинстве случаев применяются способы, описанные ниже.

Пример1: 

 

Внести под знак дифференциала можно элементарные функции и проверить результат с помощью дифференцирования. Рассмотрим следующие примеры этой операции:

 cosxdx = d(sinx) sinxdx = -dcosx xdx = d(x2/2) x2dx = d(x3/3)

 exdx = d(ex) e-xdx = -d(e-x)  

    

  

Этот прием позволяет значительно упростить преобразование подынтегрального выражения для приведения его к табличному виду. В представленных ниже примерах в подынтегральной функции выделяется ее часть, которая при внесении этой части под знак интеграла позволяет увидеть табличный интеграл::

 Пример 2.

 Пример 3.

 Пример 4.

 Пример 5.

Обратите внимание на процедуру замены переменной интегрирования dx→dt. Это действие можно опустить и выполнять интегрирование в уме.

Тройные интегралы в цилиндрических координатах