Контрольная по математике Векторная алгебра и аналитическая геометрия

Графика
Курс лекций для студентов
художественно-графических факультетов
Геометрическое черчение
Начертательная геометрия
Конспект лекций
Практикум решения задач
начертательной геометрии
Машиностроительное черчение
Эскизирование деталей
Правила нанесения размеров
Практическое занятие
Решение метрических задач
Выполнение чертежей
Инженерная графика
База графических примеров
Теория механизмов и машин
Теоретическая механика
Основы технической механики
Сборник задач по математике
Примеры решения задач курсового расчета
Вычислить интеграл
Векторная алгебра и аналитическая геометрия
Тройные и двойные интегралы
Линейная алгебра
Ряд Фурье для четных и нечетных функций
Типовой расчет (задания из Кузнецова)
Вычисление площадей в декартовых координатах
Математический анализ
Информатика
Компьютерные сети
Выделенный канал
Средства анализа и управления сетями
Кабельная система
Базовые технологии локальных сетей
Сетевой уровень
Основы вычислительных систем
Сетевая технология
Мобильный Internet
Руководства по техническому обслуживанию ПК
Руководство по глобальной компьютерной сети
Сборник задач по физике
Физика решение задач
Ядерная физика
Законы теплового излучения
Решение задач по электротехнике
использование MATLAB
Язык программирования MATLAB
Расчет электрических цепей
Моделирование цепей переменного тока
Лекции ТКМ
Электротехнические материалы
Атомная энергетика
Ядерные реакторы
Основы ядерной физики
Использование атомной энергетики
для решения проблем дефицита пресной воды
Проектирование и строительство
атомных энергоблоков
Юбилей Атомной энергетики
Атомные станции с реакторами РБМК 1000
АЭС с реакторами ВВЭР
Реаторы третьего поколения ВВЭР-1500
АЭС с реакторами БН-600
Оборудование атомных станций
Отказы оборудования
Ядерное оружие
Ядерная физика

Ядерные реакторы технология

 

Задача 1. Даны вершины треугольника АВС: А (−4; 8), В(5; −4), С(10; 6). Найти: 1) длину стороны АВ; 2) уравнения сторон АВ и АС и их угловые коэффициенты; 3) внутренний угол А радианах с точностью до 0,01; 4) уравнение высоты СD и ее длину; 5) уравнения окружности, для которой высота СD есть диаметр; 6) систему линейных неравенств, определяющих треугольник АВС.

Задача 2. Составить уравнение линии, для каждой точки которой отношение расстояний до точки А (3; 0) и до прямой х=12 равно числу =0,5. Полученное уравнение привести к простейшему виду и построить кривую

Векторная алгебра и аналитическая геометрия в пространстве Задача 4. Даны координаты трех точек: А(3; 0; −5), В (6; 2; 1), С (12; −12; 3).

Элементы линейной алгебры Задача 5. Данную систему уравнений записать в матричной форме и решить ее с помощью обратной матрицы:

Введение в анализ Задача 6. Вычислить пределы

Производная и дифференциал Задача 8. Найдите производные функции

Приложения производной Задача 9. Исследовать функцию у= и построить ее график.

Задача 10. Резервуар, имеющий форму открытого сверху прямоугольного параллелепипеда с квадратным дном, нужно вылудить внутри оловом. Каковы должны быть размеры резервуара при его емкости 108 л воды, чтобы затраты на его лужение были наименьшими?

Дифференциальные уравнения Задача12. Решить уравнение у'−у tg x=−y2cos x.

 Задача 14. Написать первые три члена ряда , найти интервал сходимости ряда и исследовать его сходимость на концах интервала.

Задача 16.Вероятность всхожести семян пшеницы равна 0,9.Какова вероятность того, что из четырех посеянных семян взойдут не менее трех?

Случайные величины и их числовые характеристики Задача 20. Задан закон распределения дискретной случайной величины Х:

Элементы линейного программирования Задача 23. Предприятие имеет возможность приобрести не более 20 трехтонных и не более 18 пятитонных автомашин. Отпускная цена трехтонного грузовика 4000 у.е, пятитонного – 5000 у.е. Сколько нужно приобрести автомашин каждой марки, чтобы их суммарная грузоподъемность была максимальной, если для приобретения автомашин выделено 150 тысяч рублей? Задачу решить графическим и аналитическим методами.

Задача 1. Вычислить . Решение. Интеграл можно свести к табличному (1), если сделать замену . Дифференцируя обе части равенства, получим , т.е. . Интеграл определенный, поэтому необходимо изменить пределы интегрирования: если , то ; если , то .

Задача 6. Вычислить .

Задача 11. Вычислить . Решение. При интегрировании иррациональных выражений вида  (здесь R – рациональная функция;   - целые числа) подстановка , где к – наименьшее общее кратное знаменателей , позволяет избавиться от иррациональности. В данном случае  Наименьшее общее кратное этих чисел равно 6. Применяем подстановку  

Задача 15. Вычислить Решение. Разложим подынтегральную функцию в сумму простейших дробей

Задача 18. Найти работу вектор-силы  на криволинейном пути

Задача 21. Определить, какие ряды сходятся

Задача 23. Найти область сходимости функционального ряда

Задача 26. Найти общее решение дифференциального уравнения .

Задача 28. Среди перечисленных дифференциальных уравнений найти уравнения в полных дифференциалах

Контрольная работа №1 Аналитическая геометрия. Элементы векторной и линейной алгебры. Комплексные числа.

Пример 2. Составить канонические уравнения: а) эллипса, большая ось которого равна 5, а фокус находится в точке F(3,0); б) гиперболы с мнимой осью в=3 и ; в) параболы, имеющей директрису x=-3.

Контрольная работа №2 Введение в анализ. Дифференциальное и интегральное исчисления функции одной переменной.

Пример 2. Исследовать функцию  на непрерывность в точках , .

Контрольная работа №3 Функции нескольких переменных. Кратные интегралы. Теория поля.

Пример 2. Найти величину и направление наибольшего изменения функции   в точке .

Контрольная работа №4 Дифференциальные уравнения. Ряды. Теория вероятностей и математическая статистика

Пример 2. Найти область сходимости степенного ряда .

Решение типового варианта контрольной работы. Пример 1. Исследовать на сходимость числовые ряды:

Пример2. Найти область сходимости ряда . Решение. Воспользуемся признаком Даламбера:

Пример 4. Найти три первые (отличные от 0) члена разложения в степенной ряд решения задачи Коши .