.
Векторная алгебра и аналитическая геометрия Элементы линейной алгебры Найдите производные функции Дифференциальные уравнения Элементы линейного программирования Исследовать функцию Ряды Типовой вариант контрольной работы.

Контрольная по математике. Векторная алгебра и аналитическая геометрия

Пример 2. Составить канонические уравнения: а) эллипса, большая ось которого равна 5, а фокус находится в точке F(3,0); б) гиперболы с мнимой осью в=3 и ; в) параболы, имеющей директрису x=-3.

а) Каноническое уравнение эллипса имеет вид . По условию задачи большая полуось а=5, с=3. Для эллипса выполняется равенство . Подставив значения а и с, найдем в2=16. Искомое уравнение эллипса:

.

б) Каноническое уравнение гиперболы имеет вид . По условию задачи мнимая полуось в=3, эксцентриситет . Для гиперболы справедливо равенство  и учитывая, что , находим а2 = 16. Искомое уравнение гиперболы:

.

в) Каноническое уравнение параболы в данном случае имеет вид y2=2px, а уравнение ее директрисы . По условию x=-3, следовательно, , уравнение параболы имеет вид .

Пример 3. Даны координаты вершин пирамиды ABCD: A(2,1,0), B(3,-1,2), C(13,3,10), D(0,1,4). Найти: 1) угол между ребрами AB и AD; 2) уравнение плоскости АВС; 3) угол между ребром AD и гранью АВС; 4) площадь грани АВС; 5) объем пирамиды; 6) уравнение высоты, опущенной из вершины AD на грань АВС.

1) Угол между ребрами AB и AD вычисляем по формуле:

,

где

.

;

.

2) Уравнение плоскости, проходящей через три заданные точки имеет вид:

.

Подставляя в данное уравнение координаты точек А,В и С, получим:

Разложив определитель по элементам первой строки, получим:

,

отсюда находим искомое уравнение плоскости АВС:

.

3) Угол между ребром AD и гранью АВС вычисляем по формуле:

,

где  - направляющий вектор ребра AD,  - нормальный вектор грани АВС.

.

4) Площадь грани АВС вычисляется по формуле:

.

.

.

.

Окончательно имеем

5) Объем пирамиды вычисляем по формуле:

.

.

Объем пирамиды равен 24 (куб. ед.).

6) Уравнение высоты DM, опущенной из вершины D на грань АВС составляет по формуле

,

где (x0, y0, z0) – координаты точки D,  - координаты направляющего вектора прямой DM. Т.к. DM ^ АВС, то в качестве направляющего вектора  можно взять нормальный вектор . Уравнение прямой Dm запишется в виде:

.


На главную