Парогазовые установки

Графика
Курс лекций для студентов
художественно-графических факультетов
Геометрическое черчение
Начертательная геометрия
Конспект лекций
Практикум решения задач
начертательной геометрии
Машиностроительное черчение
Эскизирование деталей
Правила нанесения размеров
Практическое занятие
Решение метрических задач
Выполнение чертежей
Инженерная графика
База графических примеров
Теория механизмов и машин
Теоретическая механика
Основы технической механики
Сборник задач по математике
Примеры решения задач курсового расчета
Вычислить интеграл
Векторная алгебра и аналитическая геометрия
Тройные и двойные интегралы
Линейная алгебра
Ряд Фурье для четных и нечетных функций
Типовой расчет (задания из Кузнецова)
Вычисление площадей в декартовых координатах
Математический анализ
Информатика
Компьютерные сети
Выделенный канал
Средства анализа и управления сетями
Кабельная система
Базовые технологии локальных сетей
Сетевой уровень
Основы вычислительных систем
Сетевая технология
Мобильный Internet
Руководства по техническому обслуживанию ПК
Руководство по глобальной компьютерной сети
Сборник задач по физике
Физика решение задач
Ядерная физика
Законы теплового излучения
Решение задач по электротехнике
использование MATLAB
Язык программирования MATLAB
Расчет электрических цепей
Моделирование цепей переменного тока
Лекции ТКМ
Электротехнические материалы
Атомная энергетика
Ядерные реакторы
Основы ядерной физики
Использование атомной энергетики
для решения проблем дефицита пресной воды
Проектирование и строительство
атомных энергоблоков
Юбилей Атомной энергетики
Атомные станции с реакторами РБМК 1000
АЭС с реакторами ВВЭР
Реаторы третьего поколения ВВЭР-1500
АЭС с реакторами БН-600
Оборудование атомных станций
Отказы оборудования
Ядерное оружие
Ядерная физика

Ядерные реакторы технология

 

Парогазовые установки с высоконапорными парогенераторами (ПГУВ) Принципиальная тепловая схема ПГУВ представлена на рис. 54.

Принципиальное отличие парогазовых установок с котлами-утилизаторами от парогазовых установок с котлами полного горения заключается в том, что котлы-утилизаторы не рассчитаны на обеспечение автономной работы паротурбинной части установки при останове газотурбинного агрегат.

Количество котлов-утилизаторов в составе ПГУКУ равно количеству газотурбинных агрегатов.

Производная от полезной работы по степени сжатия, при которой полезная работа максимальна, будет равна. (105).

Сжигание топлива в камере сгорания газовой турбины согласно условиям прочности лопаток турбин осуществляется с повышенными значениями коэффициента избытка воздуха αг.

Термическая эффективность парогазовых установок.

Соотношения между параметрами газового и парового циклов Критерием, определяющим целесообразность утилизации теплоты отходящих газов, является термический КПД .

Выразим относительный расход пара через его параметры. Для этого используем уравнение теплового баланса для пароперегревателя и испарителя котла-утилизатора , (132).

Парогазовые установки с впрыском пара В парогазовых установках с впрыском пара (ПГУ ВП) в воздушный или газовый тракт энергетической газотурбинной установки (ГТУ) подаются продукты сгорания топлива и водяной пар, которые в виде парогазовой смеси расширяются в газовой турбине.

Теплота, подведенная в камере сгорания: , (136) где cp – массовая теплоемкость водяного пара.

На рис. 65 приведена расчетная зависимость изменения КПД газовой турбины при увеличении доли впрыскиваемого пара.

Модернизация котельных в ТЭЦ При существующем соотношении цен на энергоносители и оборудовании стала чрезвычайно целесообразной выработка электроэнергии на тепловом потреблении

Энергосбережение в газовой промышленности Опытно-промышленная газотурбинная расширительная станция (ГТРС) на Среднеуральской ГРЭС.

Технологической схемой ГТРС предусматривается подогрев газа перед турбиной, для того чтобы после понижения давления на лопаточном аппарате температура газа на выхлопе сохранялась положительной.

Оптимальное использование теплоты уходящих газов газовых турбин Термодинамическая оценка.

При расходе продуктов сгорания (воздуха через компрессор)  кг/с потеря мощности составит  кВт. Т. е. потеря работы (в процентах от полезной работы турбины), связанная с работой теплообменника на максимальном режиме (с аэродинамическим сопротивлением 467 Па), равна % .

Теплоснабжение от утилизационных установок компрессорных станций Рассмотрим два варианта теплоснабжения (рис. 71):теплоснабжение жилого массива от индивидуальной котельной, расположенной в самом жилом массиве;теплоснабжение жилого массива от утилизаторов газовой турбины со строительством магистрального трубопровода длиной L.

Утилизационная установка компрессорной станции Капиталовложение включают в себя две составляющие: капитальные затраты на установку теплообменника и на сооружение магистрального трубопровода теплоснабжения.

Энергосбережение промышленности Энергосбережение в котельных и тепловых сетях.

Количество теплоты, отданное продуктами сгорания, определятся выражением . (180).

Работа котельной установки в режиме пониженного давления.

Возврат конденсата в котельную В практике эксплуатации паровых систем теплоснабжения недостаточное внимание уделяется сбору и возврату конденсата в котельную, а это приводит к значительному перерасходу топлива.

Режимы работы котельного оборудования Большие, легкодоступные, практически не  требующие затрат резервы экономии газа и электроэнергии заключены в оптимальном распределении нагрузок между котлами, работающими на общего потребителя.

Суммарная выработка пара (тепловой энергии) в единицу времени двумя котлами составляет . Если котел №1 загружен до значения , то загрузка котла №2 составит .

Перевод паровых котлов на водогрейный режим Перевод паровых котлов на водогрейный режим имеет как недостатки, так и преимуществ.

Энергосбережение в компрессорном хозяйстве Большой расход сжатого воздуха на промышленных предприятиях связан с его рациональным использованием и различного рода утечками.

Из выражения следует, что массовый расход идеального газа при истечении зависит от площади выходного сечения, свойств и начальных параметров газа и степени его расширения . При  расход, естественно, равен нулю ().

Даже при избыточном давлении воздуха в 1 атм достигается критическая скорость истечения (рис. 79), которая в дальнейшем при увеличении давления воздуха в воздуховоде не изменяется.

Удельный тепловой поток при однокамерном остеклении можно рассчитать по выражению  Вт/(м2×К), (209)

где  - коэффициент теплоотдачи от поверхности стекла к воздушной прослойке, являющийся суммой конвективного и лучистого коэффициентов теплообмена.

Система инфракрасного обогрева производственных помещений Инфракрасные системы обогрева (ИКО) имеют ряд преимуществ по сравнению с традиционными системами .

Светлые системы ИКО. Все светлые ИК- излучатели основаны на принципе поверхностного горения (рис. 82).

Внутри воздуховодов рециркулирует горячий воздух с температурой 200-400 °С, нагревая стенки воздуховода.

На главную