Лабораторные работы по электротехнике

Режимы работы электрических цепей

       В зависимости от нагрузки различают следующие режимы работы: номинальный, режим холостого хода, короткого замыкания, согласованный режим.
     При номинальном режиме электротехнические устройства работают в условиях, указанных в паспортных данных завода-изготовителя.
       Режим холостого хода возникает при обрыве цепи или отключении сопротивления нагрузки.
       Режим короткого замыкания получается при сопротивлении нагрузки, равном нулю. Ток короткого замыкания в несколько раз превышает номинальный ток. Режим короткого замыкания является аварийным.
       Согласованный режим - это режим передачи от источника к сопротивлению нагрузки наибольшей мощности. Согласованный режим наступает тогда, когда сопротивление нагрузки становится равным внутреннему сопротивлению источника. При этом в нагрузке выделяется максимальная мощность.

Основные законы электрических цепей

       На рис. 1.7 изображен участок цепи с сопротивлением R. Ток, протекающий через сопротивление R, пропорционален падению напряжения на сопротивлении и обратно пропорционален величине этого сопротивления.

                                      
       


        Рис. 1.7           

       Основными законами электрических цепей, наряду с законом Ома, являются первый и второй законы Кирхгофа. В соответствии с первым законом Кирхгофа, алгебраическая сумма токов в любом узле цепи равна нулю:

Возьмем схему на рис. 1.8 и запишем для нее уравнение по первому закону Кирхгофа.

      Токам, направленным к узлу, присвоим знак "плюс", а токам, направленным от узла - знак "минус". Получим следующее уравнение:
 
         

      
    Рис. 1.8

       Согласно второму закону Кирхгофа, алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжений в этом контуре

        Возьмем схему на рис. 1.9 и запишем для внешнего контура этой схемы уравнение по второму закону Кирхгофа.

     Для этого выберем произвольно направление обхода контура, например, по часовой стрелке. ЭДС и падения напряжений записываются в левую и правую части уравнения со знаком "плюс", если направления их совпадают с направлением обхода контура, и со знаком "минус", если не совпадают.
     При определении тока в ветви, содержащей источник ЭДС, используют закон Ома для активной ветви.


Рис. 1.9


            
                 Возьмем ветвь, содержащую сопротивления и источники ЭДС. Ветвь включена к узлам a-b, известно направление тока в ветви (рис. 1.10).

 Рис. 1.10

 

     Возьмем замкнутый контур, состоящий из активной ветви и стрелки напряжения Uab, и запишем для него уравнение по второму закону Кирхгофа. Выберем направление обхода контура по часовой стрелке. 

       Получим

 

       Из этого уравнения выведем формулу для тока



      ЭДС в формуле записывается со знаком "плюс", если направление ее совпадает с направлением обхода контура и со знаком "минус", если не совпадает. .

2. Эквивалентные преобразования схем

          Эквивалентным называется преобразование, при котором напряжения и токи в частях схемы, не подвергшихся преобразованию, не меняются.

2.1. Последовательное соединение элементов
электрических цепей

       На рис. 2.1 изображена электрическая цепь с последовательно соединенными сопротивлениями.


Рис. 2.1

       Напряжение на зажимах источника ЭДС равно величине электродвижущей силы. Поэтому часто источник на схеме не изображают.
        Падения напряжений на сопротивлениях определяются по формулам

        В соответствии со вторым законом Кирхгофа, напряжение на входе электрической цепи равно сумме падений напряжений на сопротивлениях цепи.  

       где   - эквивалентное сопротивление.

        Эквивалентное сопротивление электрической цепи, состоящей из n последовательно включенных элементов, равно сумме сопротивлений этих элементов.

2.2. Параллельное соединение элементов
электрических цепей

       На рис. 2.2 показана электрическая цепь с параллельным соединением сопротивлений.


Рис. 2.2

       Токи в параллельных ветвях определяются по формулам:

        где - проводимости 1-й, 2-й и n-й ветвей.

        В соответствии с первым законом Кирхгофа, ток в неразветвленной части схемы равен сумме токов в параллельных ветвях.

        где

        Эквивалентная проводимость электрической цепи, состоящей из n параллельно включенных элементов, равна сумме проводимостей параллельно включенных элементов.
        Эквивалентным сопротивлением цепи называется величина, обратная эквивалентной проводимости

       Эквивалентное сопротивление схемы, состоящей из n одинаковых элементов, в n раз меньше сопротивлений R

 одного элемента

       Возьмем схему, состоящую из двух параллельно включенных сопротивлений (рис. 2.3). Известны величины сопротивлений и ток в неразветвленной части схемы. Необходимо определить токи в параллельных ветвях.


Рис. 2.3  

     Эквивалентная проводимость схемы

,

        а эквивалентное сопротивление

       

Напряжение на входе схемы  

     

Токи в параллельных ветвях        

Аналогично        

Ток в параллельной ветви равен току в неразветвленной части схемы, умноженному на сопротивление противолежащей, чужой параллельной ветви и деленному на сумму сопротивлений чужой и своей параллельно включенных ветвей.

Анализ электрических цепей постоянного тока с одним источником энергии Расчет электрических цепей постоянного тока с одним источником методом свертывания       В соответствии с методом свертывания, отдельные участки схемы упрощают и постепенным преобразованием приводят схему к одному эквивалентному (входному) сопротивлению, включенному к зажимам источника. Схема упрощается с помощью замены группы последовательно или параллельно соединенных сопротивлений одним, эквивалентным по сопротивлению.

Нелинейные электрические цепи постоянного тока   В линейной электрической цепи сопротивления ее элементов не зависят от величины или направления тока или напряжения. Вольтамперные характеристики линейных элементов  (зависимость напряжения на элементе от тока)  являются прямыми линиями.

Изображения синусоидальных функций времени в векторной форме     При расчете электрических цепей часто приходится складывать или вычитать величины токов или напряжений, являющиеся синусоидальными функциями времени. Графические построения или тригонометрические преобразования в этом случае могут оказаться слишком громоздкими.

Сопротивление в цепи синусоидального тока

Последовательно соединенные реальная индуктивная катушка и конденсатор в цепи синусоидального тока

Мощность в цепи синусоидального тока     Мгновенной мощностью называют произведение мгновенного напряжения на входе цепи на мгновенный ток.

Соединение в треугольник. Схема, определение   Если конец каждой фазы обмотки генератора соединить с началом следующей фазы, образуется соединение в треугольник. К точкам соединений обмоток подключают три линейных провода, ведущие к нагрузке.

Свойства ферромагнитных материалов  Поместим ферромагнитный материал внутри катушки с током. Сначала, с увеличением напряженности намагничивающего поля, магнитная индукция быстро возрастает. Затем, из-за насыщения материала, при дальнейшем увеличении напряженности магнитного поля магнитная индукция почти не меняется.

Работа трансформатора под нагрузкой  Если к первичной обмотке трансформатора подключить напряжение U1, а вторичную обмотку соединить с нагрузкой, в обмотках появятся токи I1 и I2. Эти токи создадут магнитные потоки Ф1 и Ф2, направленные навстречу друг другу. Суммарный магнитный поток в магнитопроводе уменьшается


Исследование линейной электрической цепи постоянного тока