Тройные и двойные интегралы при решении задач

Графика
Курс лекций для студентов
художественно-графических факультетов
Геометрическое черчение
Начертательная геометрия
Конспект лекций
Практикум решения задач
начертательной геометрии
Машиностроительное черчение
Эскизирование деталей
Правила нанесения размеров
Практическое занятие
Решение метрических задач
Выполнение чертежей
Инженерная графика
База графических примеров
Теория механизмов и машин
Теоретическая механика
Основы технической механики
Сборник задач по математике
Примеры решения задач курсового расчета
Вычислить интеграл
Векторная алгебра и аналитическая геометрия
Тройные и двойные интегралы
Линейная алгебра
Ряд Фурье для четных и нечетных функций
Типовой расчет (задания из Кузнецова)
Вычисление площадей в декартовых координатах
Математический анализ
Информатика
Компьютерные сети
Выделенный канал
Средства анализа и управления сетями
Кабельная система
Базовые технологии локальных сетей
Сетевой уровень
Основы вычислительных систем
Сетевая технология
Мобильный Internet
Руководства по техническому обслуживанию ПК
Руководство по глобальной компьютерной сети
Сборник задач по физике
Физика решение задач
Ядерная физика
Законы теплового излучения
Решение задач по электротехнике
использование MATLAB
Язык программирования MATLAB
Расчет электрических цепей
Моделирование цепей переменного тока
Лекции ТКМ
Электротехнические материалы
Атомная энергетика
Ядерные реакторы
Основы ядерной физики
Использование атомной энергетики
для решения проблем дефицита пресной воды
Проектирование и строительство
атомных энергоблоков
Юбилей Атомной энергетики
Атомные станции с реакторами РБМК 1000
АЭС с реакторами ВВЭР
Реаторы третьего поколения ВВЭР-1500
АЭС с реакторами БН-600
Оборудование атомных станций
Отказы оборудования
Ядерное оружие
Ядерная физика

Ядерные реакторы технология

 

Вычисление объемов с помощью тройных интегралов

Пример Найти объем шара x2 + y2 + z2 ≤ R2.

Найти объем тетраэдра, ограниченного плоскостями, проходящими через точки A (1;0;0), B (0;2;0), C (0;0;3), и координатными плоскостями Oxy, Oxz, Oyz

Найти объем тетраэдра, ограниченного плоскостями x + y + z = 5, x = 0, y = 0, z = 0

Найти объем области, ограниченной двумя параболоидами:

Вычислить объем эллипсоида Вычислить интеграл, перейдя от прямоугольных координат к полярным.

Найти объем тела, ограниченного сферой x2 + y2 + z2 = 6 и параболоидом x2 + y2 = z.

Вычислить объем тела, ограниченного параболоидом z = 2 − x2 − y2 и конической поверхностью .

Метод замены переменной Рассмотрим неопределенный интеграл F(x) некоторой функции f(x). Для упрощения вычисления интеграла часто удобно выполнить замену переменной

Вычислить интеграл .

Вычислить интеграл .

Замена переменных в двойных интегралах

Для вычисления двойного интеграла иногда удобнее перейти в другую систему координат. Это может быть обусловлено формой области интегрирования или сложностью подынтегральной функции. В новой системе координат вычисление двойного интеграла значительно упрощается.

Вычислить двойной интеграл , в котором область определения R ограничена прямыми . Предел и непрерывность

Вычислить двойной интеграл , в котором область интегрирования R ограничена прямыми линиями .

Вычислить интеграл , где область R ограничена параболами и гиперболами .

Матричный метод Пусть дано матричное уравнение:

Вычислить интеграл , где область R ограничена прямыми .

Замена переменных в тройных интегралах

При вычислении тройного интеграла, как и двойного, часто удобно сделать замену переменных. Это позволяет упростить вид области интегрирования или подынтегральное выражение. Пусть исходный тройной интеграл задан в декартовых координатах x, y, z в области U:

Найти объем области U, заданной неравенствами

Найти объем наклонного параллелепипеда, заданного неравенствами

 

Определенный интеграл. Формула Ньютона-Лейбница.

Пусть функция f (x) непрерывна на замкнутом интервале [a, b]. Определенный интеграл от функции f (x) в пределах от a до b вводится как предел суммы бесконечно большого числа слагаемых, каждое из которых стремится к нулю

Площадь криволинейной трапеции

Площадь фигуры, ограниченной осью 0x, двумя вертикальными прямыми x = a, x = b и графиком функции f (x) (рисунок 1), определяется по формуле

Замена переменной в определенном интеграле

Вычислить интеграл .

Вычислить интеграл .

Найти площадь фигуры, ограниченную графиками функций и .

Вычислить площадь эллипса .

Определение двойного интеграла

Понятие интеграла может быть расширено на функции двух и большего числа переменных. Рассмотрим, например, функцию двух переменных z = f (x,y).

Свойства двойного интеграла

Определение тройного интеграла Формально определение тройного интеграла можно ввести аналогично двойному интегралу как предел суммы Римана

Оценить максимальное значение тройного интеграла

Производная сложной функции "Двухслойная" сложная функция записывается в виде где u = g(x) - внутренняя функция, являющаяся, в свою очередь, аргументом для внешней функции f.

Определить производную функции .

Продифференцировать .

Вычислить интеграл .

Двойные интегралы в полярных координатах Одним из частных случаев замены переменных является переход из декартовой в полярную систему координат

Пример Вычислить двойной интеграл , преобразовав его в полярные координаты.

Найти интеграл , где область интегрирования R ограничена кардиоидой

Вычислить двойной интеграл посредством преобразования в полярные координаты. Область интегрирования R представляет собой круг .

Пусть область интегрирования R типа I (элементарная относительно оси Oy) ограничена графиками функций .

Двойные интегралы в произвольной области

Пример Вычислить интеграл . Область интегрирования R ограничена графиками функций .

Вычислить интеграл . Область интегрирования R ограничена прямыми .

Найти интеграл , где область R представляет собой сегмент окружности. Границы сегмента заданы уравнениями .

Найти интеграл , где R ограничена прямой и параболой .

Вычислить интеграл . Область интегрирования представляет собой треугольник с вершинами O (0,0), B (0,1) и C (1,1).

Двойные интегралы в прямоугольной области Пусть область интегрирования R представляет собой прямоугольник .

Пример Вычислить двойной интеграл , заданный в области .

Вычислить интеграл , заданный в области .

Геометрические приложения двойных интегралов

Пример Найти площадь области R, ограниченной гиперболами и вертикальными прямыми .

Найти объем тела в первом октанте, ограниченного плоскостями .

Вычислить объем тела, ограниченного поверхностями .

Найти площадь лепестка розы, заданной уравнением .

Вычислить объем единичного шара

Вычислить площадь сферы радиуса a.

Геометрические приложения криволинейных интегралов Криволинейные интегралы имеют многочисленные приложения в математике, физике и прикладных расчетах. В частности, с их помощью вычисляются

  • Длина кривой;
  • Площадь области, ограниченной замкнутой кривой;
  • Объем тела, образованного вращением замкнутой кривой относительно некоторой оси.

Найти длину кривой при условии .

Вычислить длину астроиды .

Найти длину циклоиды, заданной в параметрическом виде вектором в интервале

Вычислить длину параболы в интервале .

Найти длину кардиоиды, заданной в полярных координатах уравнением

Найти площадь области, ограниченной гиперболой , осью Ox и вертикальными прямыми x = 1, x = 2

Найти объем тела, образованного вращением вокруг оси Ox области R, ограниченной кривой , и прямыми x = 0, x = , y = 0.

Геометрические приложения поверхностных интегралов С помощью поверхностных интегралов вычисляются

  • Площадь поверхности;
  • Объем тела, ограниченного замкнутой поверхностью.

Вычислить площадь поверхности части параболоида , лежащей выше плоскости xy.

Вычислить площадь поверхности тора, заданного уравнением в цилиндрических координатах.

Вычислить объем эллипсоида .

Используя формулу Грина, найти интеграл , где кривая C представляет собой окружность, заданную уравнением .

Используя формулу Грина, найти интеграл , где кривая C представляет собойэллипс

С помощью формулы Грина найти интеграл . Контур C ограничивает сектор круга радиусом a, лежащий в первом квадранте

Вычислить интеграл с помощью формулы Грина. Контур интегрирования C представляет собой окружность

Найти площадь области R, ограниченной астроидой .

Несобственные интегралы Определенный интеграл называется несобственным интегралом, если выполняется, по крайней мере, одно из следующих условий:

  • Предел a или b (или оба предела) являются бесконечными;
  • Функция f (x) имеет одну или несколько точек разрыва внутри интервала [a,b].

Определить, при каких значениях k интеграл сходится.

Вычислить интеграл .

Определить, сходится или расходится несобственный интеграл ?

Определить, при каких значениях k интеграл сходится.

Вычислить периметр единичной окружности.

Неопределенный интеграл и его свойства. Таблица интегралов.

Вычислить .

Вычислить .

Интегральный признак Коши

Определить, сходится или расходится ряд .

Определить, сходится или расходится ряд .

Интегрирование по частям Пусть u(x) и v(x) являются дифференцируемыми функциями. Дифференциал произведения функций u и v определяется формулой Проинтегрировав обе части этого выражения, получим или, переставляя члены,

Вычислить интеграл .

Вывести формулу редукции (понижения степени) для .

Интегрирование гиперболических функций

Вычислить .

Найти интеграл .

Вычислить интеграл .