.
Определение расстояния между ветвями и соединительными планками колонны Построить эпюры нормальной силы

Лабораторные работы и расчеты по сопромату

Применяемые машины и приборы

Опыты проводятся на универсальных испытательных машинах, описание которых дано в п. 10.1.1 и др.

Измерение деформаций производится с помощью рычажных тензометров.

11.4.2. Содержание работы

 В работе испытанию на растяжение или сжатие в пределах упругости подвергается образец из заранее выбранного материала.

Ниже рассматривается вариант работы, когда испытанию на растяжение подвергается стальной образец прямоугольного поперечного сечения (рис. 11.4.1), причем нагрузка равными ступенями прикладывается с некоторым эксцентриситетом е по одной оси относительно центра сечения. Рычажными тензометрами Т1, Т2, Т3, располагающимися на стержне так, как показано на рис. 11.4.1, замеряются линейные деформации соответствующих волокон на каждой ступени нагружения образца и определяются опытные относительные деформации εоп тех же волокон по формуле

где Δi,ср – среднее приращение показаний соответствующего тензометра (i= 1, 2, 3) на интервале нагрузки; ki – коэффициент увеличения i-го тензометра; Б – база тензометра.

Затем определяются опытные напряжения в указанных точках стержня с использованием закона Гука:

Теоретические значения нормальных напряжений в тех же точках можно найти, исходя из общей формулы для расчета напряжений при внецентренном растяжении

В рассматриваемом здесь частном случае приложения нагрузки к образцу (рис.11.4.2) имеем:

N = F, My = Fe, Mz = 0.

Если учесть координаты точек 1, 2, 3, где закреплены тензометры Т1, Т2 и Т3, и знак изгибающего момента Мy, то формула для напряжений примет следующий вид:

для точки 1:  

(напряжение от силы F – растягивающее, напряжение от действия момента Мy – сжимающее);

для точки 2: 

(напряжение от действия момента равно нулю, так как ось y в случае изгиба моментом Мy является нейтральной);

для точки 3: 

(напряжения от действия и силы F и момента Мy – растягивающие);

осевой момент сопротивления равен Wy = bh2/6.

После определения опытных и расчетных значений нормальных напряжений их необходимо сравнить между собой и найти расхождение, т.е. определить величины

11.4.3. Порядок выполнения работы

Закрепить образец в захватах испытательной машины и установить на нем три тензометра.

Дать небольшую начальную нагрузку и записать начальные отсчеты по тензометрам.

Произвести ступенчатое нагружение стержня, записывая на каждой ступени показания тензометров.

Разгрузить образец до начальной нагрузки и сверить показания тензометров с первоначальными. При значительном расхождении опыт повторить.

Снять нагрузку с образца и обработать опытные данные, определив напряжения в точках 1, 2, 3.

Подсчитать теоретические значения нормальных напряжений в тех же точках.

Сравнить опытные и теоретические значения напряжений, найдя расхождение в их величине.

Проверка прочности в опасных точках составной трубы, нагруженной внутренним давлением р.

Вначале рассчитываем давление от натяга рк на поверхности контакта наружной и внутренней трубы, используя формулу (5.5.4)

Рассчитываем напряжения σr и σθ в точке 1 от действия натяга рк, используя формулы (5.5.1) и полагая в них pa = 0, pb = pk , r = a:

Рассчитаем суммарные напряжения σr и σθ  в точке 1 от действия р и pk:

 

Проверяем прочность составной трубы в точке 1 по III теории прочности : 

Условие прочности для составной трубы выполняется.

  4) Определение радиальных перемещений точек 1 составной трубы.

Воспользуемся законом Гука для двухосного напряженного состояния

Задача 5.5.2. Для стальной составной трубы заданы: внутренний радиус внутренней трубы а = 5 см, внутреннее давление р = 200МПа, расчетное сопротивление стали Ry = 300 МПа, модуль упругости материала стальной трубы Е = 2·105 МПа. Требуется определить внешний радиус внутренней трубы b, внешний радиус наружной трубы с, радиальный натяг δ (рис. 5.5.2).

Ответ: b = 8,66 см; с = 15 см; δ = 0,0086 см.


На главную