Курс инженерной графики и начертательной геометрии технического университета

Сопромат
Расчет валов
Построить эпюры
Задачи сопромата
Начертательная геометрия
ЕСКД
Сопряжение
Примеры
Черчение
Оформление чертежей
Выполнение чертежей
Практикум
Инженерная графика
Лекции
Карта сайта
На главную

Лабораторные работы и расчеты по сопромату

Расчет кривых брусьев малой кривизны

Если отношение высоты h кривого бруса к его радиусу кривизны Ro существенно меньше единицы (h/Ro < 0,2 ), то считается, что брус имеет малую кривизну. Расчетные формулы, выведенные ранее для прямого бруса, применимы и к брусу малой кривизны.

Расчет на прочность сжато-изгибаемых и растянуто-изгибаемых брусьев малой кривизны следует выполнять по формуле

  (5.4.1)

где и z – координаты рассматриваемой точки поперечного сечения относительно его главных осей.

 В частном случае, если равны нулю поперечная сила Qz и изгибающий момент , будет сочетание прямого изгиба в главной плоскости с растяжением или сжатием. В этом случае расчет следует выполнять по формуле

  (5.4.2)

 Задача 5.4.1. Построить эпюры изгибающих моментов Мz, поперечных   и нормальных N сил для трехшарнирной круговой арки, показанной на рис. 5.4.1, а. При расчете принять q = 3 т/м, F1 = F2 = 10 т, l = 24 м, f = 6 м.

 Определить  в прямоугольном поперечном сечении арки. Размеры поперечного сечения принять .

 Решение. Определим опорные реакции VA, VB, для чего рассмотрим

 откуда VB = 14,75 т;

откуда VA = 23,25 т.

 Составим условие:  тогда  Горизонтальные опорные реакции Н определяем из уравнения  составляемого при рассмотрении только правой части арки

  откуда Н = 19,5 т.

 4. Если плоское сечение имеет две оси симметрии, то центр тяжести сечения лежит на пересечении этих осей симметрии.

 Задача 2.1.1. Определить центр тяжести треугольного поперечного сечения, показанного на рис. 2.1.3.

 Решение. Поперечное сечение представляет собой равнобедренный треугольник, а следовательно, ось у – ось симметрии и центр тяжести рассматриваемого поперечного сечения лежит на этой оси. 

 Для нахождения центра тяжести используем вторую из формул (2.1.6). Запишем

  (а)

 Из подобия треугольников  и  находим

 или  откуда 

 Найденное значение by подставляем в формулу (а) для вычисления статического момента Sx:

 В этом случае вторая из формул (2.1.6) дает

 На рис. 2.1.3 проводим линию у = ус = h/3. Центр тяжести треугольного поперечного сечения будет лежать на пересечении проведенной линии и оси у. Координаты центра тяжести этого сечения: х = 0, у = h/3.


К оглавлению раздела Лаборотоные по сопромату