Курс инженерной графики и начертательной геометрии технического университета

Сопромат
Расчет валов
Построить эпюры
Задачи сопромата
Начертательная геометрия
ЕСКД
Сопряжение
Примеры
Черчение
Оформление чертежей
Выполнение чертежей
Практикум
Инженерная графика
Лекции
Карта сайта
На главную

Лабораторные работы и расчеты по сопромату

И наконец, по формулам (5.4.3) находим значения внутренних усилий, возникающих в арке. Например, в сечении х = 0 имеем у = 0,   sinφ = 0,8; cosφ = 0,6; Н = 19,5 т. Подставляя эти данные, взятые из первой строки табл. 5.4.1, в формулы (5.4.3) определяем:

Mz(x = 0) = 0 – 19,5·0 = 0;

N(x = 0) = – (23,25·0,8 + 19,5·0,6) = –30,3 т.

  Полученные результаты записываем опять же в первую строку табл. 5.4.1. Затем повторяем все вычисления с шагом . При вычислении внутренних усилий необходимо помнить, что в местах приложения сосредоточенных сил значения поперечных   и нормальных N сил изменяются скачкообразно.

Таблица 5.4.1

х

м

т·м

т

у

м

tgφ

 

cosφ

 

sinφ

 

Mz

тм

т

N

т

0

1

2

3

4

5

6

0

21,75

40,5

56,25

69

78,75

85,5

23,25

20,25

17,25

14,25

11,25

8,25

5,25

0

1,2

2,1

3

3,69

4,27

4,75

1,33

1,08

0,9

0,75

0,63

0,53

0,44

0,6

0,68

0,74

0,8

0,85

0,88

0,92

0,8

0,73

0,67

0,6

0,53

0,47

0,4

0

–1,61

–2,02

–2,25

–2,93

–4,45

–7,08

–1,65

–0,53

–0,14

–0,3

–0,88

–1,8

–2,99

–30,3

–28,1

–26

–24,2

–22,5

–21,1

–20

6

7

8

9

10

11

12

85,5

90,75

96

101,2

106

111,7

117

 

 

 

5,25

4,75

5,14

5,46

5,7

5,87

5,97

6

0,44

0,35

0,28

0,2

0,13

0,07

0

0,92

0,94

0,96

0,98

0,99

0,998

1

0,4

0,33

0,27

0,2

0,13

0,07

0

–7,08

–9,52

–10,4

–9,84

–7,89

–4,6

0

–2,99

–1,55

–0,14

1,24

2,6

3,93

5,25

–20

–20,1

–20,2

–20,2

–20

–19,8

–9,5

12

13

14

15

16

17

18

117

112,2

107,5

102,7

98

93,25

88,5

 

 

 

–4,75

 

 

 

6

5,97

5,87

5,7

5,46

5,14

4,75

0

–0,07

–0,13

–0,2

–0,28

–0,35

–0,44

1

0,998

0,99

0,98

0,96

0,94

0,92

0

–0,07

–0,13

–0,2

–0,27

–0,33

–0,4

0

–4,1

–6,89

–8,34

–8,41

–7,02

–4,08

–4,75

–3,44

–2,11

–0,75

  0,62

 2,02

3,45

–19,5

–19,8

–20

–20,1

–20,1

–20

–19,8

18

19

20

21

22

23

24

88,5

73,75

59

44,25

29,5

14,75

0

 

 

 

–14,75

4,75

4,27

3,69

3

2,1

1,2

0

–0,44

–0,53

–0,63

–0,75

–0,9

–1,08

–1,33

0,92

0,88

0,85

0,8

0,74

0,68

0,6

–0,4

–0,47

–0,53

–0,6

–0,67

–0,73

–0,8

–4,08

–9,45

–12,9

–14,3

–13

–8,61

0

–5,72

–3,45

–0,21

–0,1

2

4,27

6,75

–23,77

–24,1

–24,4

–24,5

–24,4

–24,1

–23,5

 Задача 2.1.5. Определить координаты центра тяжести плоского сечения, ограниченного осью х, кубической параболой x = hy3/b3 и прямой линией x = h (рис. 2.1.7).

 Ответ: x1c = 4h/7; y1c = 0,4b.

 Задача 2.1.6. Определить координаты центра тяжести плоского сечения, ограниченного осью у, кубической параболой x = hy3/b3 и прямой линией у = в (рис. 2.1.7).

 Ответ: x2c = 2h/7; y2c = 0,8b.

 Задача 2.1.7. Проверить правильность ответов в примерах (2.1.5) и (2.1.6) при помощи формул (2.1.5), рассматривая плоское прямоугольное сечение как составное, состоящее из площадей A1 = 3bh/4 и A2 = bh/4 (рис. 2.1.7).

 Задача 2.1.8. Определить центр тяжести поперечного сечения, изображенного на рис. 2.1.8.

 Ответ: хс = 10,57 см; ус = 9,43 см.

(Центр тяжести С поперечного сечения должен лежать на оси симметрии поперечного сечения).

 Задача 2.1.9. Определить центр тяжести поперечного сечения, показанного на рис. 2.1.9.

 У к а з а н и я. Для определения положения центра тяжести сложного сечения рекомендуется следующий порядок действий:

  1. Сложное сечение разбивается на части, имеющие вид простых фигур.

 2. Определяются площади и положения центров тяжести каждой простой фигуры.

 3. Выбираются случайные (произвольные) координатные оси х и у. Случайные оси желательно выбирать так, чтобы все точки плоского поперечного сечения имели положительные координаты.

 4. По формулам (2.1.5), которые можно записать как

  (2.1.9)

вычисляются статические моменты Sx и Sy всего плоского сечения как суммы статических моментов Sxi, Syi каждой фигуры относительно осей x, y.


К оглавлению раздела Лаборотоные по сопромату