Курс инженерной графики и начертательной геометрии технического университета

Сопромат
Расчет валов
Построить эпюры
Задачи сопромата
Начертательная геометрия
ЕСКД
Сопряжение
Примеры
Черчение
Оформление чертежей
Выполнение чертежей
Практикум
Инженерная графика
Лекции
Карта сайта
На главную

Лабораторные работы и расчеты по сопромату

Определить координаты центра тяжести плоского сечения, ограниченного осью х, квадратной параболой x = hy2/b2 и прямой линией х = h (рис. 2.1.6).


Ответ: xc = 0, yc = 4R/(3).

Решение. Для нахождения центра тяжести воспользуемся формулами (2.1.6). В первую очередь по формуле (2.1.1) определяем площадь поперечного сечения

 Затем по формулам (2.1.2) находим статические моменты сечения:

  И, окончательно, по формулам (2.1.6) определяем

  Задача 2.1.5. Определить координаты центра тяжести плоского сечения, ограниченного осью х, кубической параболой x = hy3/b3 и прямой линией x = h (рис. 2.1.7).

  Ответ: x1c = 4h/7; y1c = 0,4b.

 Задача 2.1.6. Определить координаты центра тяжести плоского сечения, ограниченного осью у, кубической параболой x = hy3/b3 и прямой линией у = в (рис. 2.1.7).

 Ответ: x2c = 2h/7; y2c = 0,8b.

Задача 2.1.7. Проверить правильность ответов в примерах (2.1.5) и (2.1.6) при помощи формул (2.1.5), рассматривая плоское прямоугольное сечение как составное, состоящее из площадей A1 = 3bh/4 и A2 = bh/4 (рис. 2.1.7).

Задача 2.1.8. Определить центр тяжести поперечного сечения, изображенного на рис. 2.1.8.

  Ответ: хс = 10,57 см; ус = 9,43 см.

(Центр тяжести С поперечного сечения должен лежать на оси симметрии поперечного сечения).

 

 Задача 2.1.9. Определить центр тяжести поперечного сечения, показанного на рис. 2.1.9.

 У к а з а н и я. Для определения положения центра тяжести сложного сечения рекомендуется следующий порядок действий:

 1. Сложное сечение разбивается на части, имеющие вид простых фигур.

 2. Определяются площади и положения центров тяжести каждой простой фигуры.

3. Выбираются случайные (произвольные) координатные оси х и у. Случайные оси желательно выбирать так, чтобы все точки плоского поперечного сечения имели положительные координаты.

 4. По формулам (2.1.5), которые можно записать как

  (2.1.9)

вычисляются статические моменты Sx и Sy всего плоского сечения как суммы статических моментов Sxi, Syi каждой фигуры относительно осей x, y.

 5. По формулам (2.1.6) вычисляются координаты центра тяжести всего сечения.

 Ответ: хс = 5а/6; ус = 5а/6 (Центр тяжести С должен лежать на оси симметрии поперечного сечения).

Жесткость сечения балки на изгиб

Для двутавра №20, согласно ГОСТ 8239-72 см4.

Жесткость балки: кНм2.

 Определение прогиба в сечении «В»

На основе уравнения (1.1), имеем выражение прогибов на втором участке:

;

при м

кНм3;

мсм.

Сечение «В» по вертикали перемещается вниз.

  Определение угла поворота сечения «В»

Используя универсальное уравнение (1.2), записываем выражение углов поворота:

;

при м

 кНм2;

рад.

Сечение «В» поворачивается против хода часовой стрелки.


К оглавлению раздела Лаборотоные по сопромату