Курс инженерной графики и начертательной геометрии технического университета

Сопромат
Расчет валов
Построить эпюры
Задачи сопромата
Начертательная геометрия
ЕСКД
Сопряжение
Примеры
Черчение
Оформление чертежей
Выполнение чертежей
Практикум
Инженерная графика
Лекции
Карта сайта
На главную

Лабораторные работы и расчеты по сопромату

Задача 4.4.2. Определить прогиб балки, изображенной на рис. 4.4.3. Жесткость балки на изгиб – EI.

 Решение. Определяем опорные реакции RA и RB:  тогда RA = RB = m/l.

 Балка состоит из одного участка. Составляем уравнение упругой оси балки (4.4.1):

а затем его интегрируем: 

   (4.4.9)

 Для определения постоянных интегрирования С и D поставим граничные условия: при х = 0 имеем у = 0 и при х = l также имеем у = 0, т.е. получаем у(х = 0) = D = 0, откуда D = 0, далее

,

откуда находим С = –ml/(3EI).

 Подставляя полученное значение С в формулы (4.4.9), окончательно запишем результаты:

 

 Задача 4.4.3. Получить уравнение изгиба упругой оси консольной балки после деформации. Балка представлена на рис. 4.4.4, жесткость балки на изгиб постоянна (EI = const).

 Ответ: y = –mx2/(2EI), = –mx/(EI).

 Задача 4.4.4. Получить уравнение изгиба упругой оси консольной балки, нагруженной равномерно распределенной нагрузкой q (рис. 4.4.5). Определить максимальный прогиб балки.

 Ответ: y = q(4x3l –x4 – 6l2x2)/(24EI); yB,max = –ql 4/(8EI).

 Задача 4.4.5. Определить максимальный прогиб консольной балки, нагруженной сосредоточенным моментом m. Жесткость балки на изгиб равна EI. Определить также угол поворота оси балки в точке В (рис. 4.4.6).

  Ответ: yB,max = –3ml2/(2EI); = –ml/(EI).

 Задача 1.2.2. Определить перемещение нижнего конца стержня, изображенного на рис. 1.2.1, а. Принять объемный вес материала стержня = 76440 Н/м3.

 Решение. Для рассматриваемого случая эпюра нормальных сил представлена на рис.1.2.1, б. Порядок построения эпюры нормальных сил рассмотрен в примере 1.1.2 (см. рис. 1.1.2).

 Эпюра нормальных сил построена с учетом сосредоточенных внешних сил и с учетом собственного веса материала бруса. Выделим на эпюре нормальных сил (рис. 1.2.1, б) ее постоянные нормальные составляющие и треугольные участки эпюры, учитывающие собственный вес соответствующего участка (рис. 1.1, а и рис. 1.1, б). Разделение составляющих эпюры нормальных сил на рис. 1.2.1, б произведено пунктирными линиями.

 Теперь перемещение поперечного сечения от постоянной составляющей эпюры нормальных сил будет определяться по формуле (1.4), а перемещение от действия собственного веса – по формуле (1.5).

  Для рассматриваемого случая формула для определения перемещения нижнего конца стержня будет иметь вид


Знак «+» показывает, что общая длина стержня увеличится, т.е. нижний конец стержня переместится вниз вдоль его оси на величину м (рис. 1.2.1, а).

 Определим перемещение сечения а – а (рис. 1.2.1, а). Для этого мысленно разрежем эпюру нормальных сил в соответствующем сечении а – а и отбросим нижнюю часть эпюры. На основании оставшейся части эпюры нормальных сил (рис. 1.2.1, в) определяем перемещение сечения а – а, используя формулы (1.4) и (1.5):

 Полученный ответ показывает, что поперечное сечение а – а переместится вниз вдоль оси стержня.


К оглавлению раздела Лаборотоные по сопромату