Начертательная геометрия - курс лекций

Ядерные реакторы на быстрых нейтронах
География размещения БН
Проект БРЕСТ-ОД-300
Проект БРЕСТ-1200
Реактор БР-5 (10), г.Обнинск
Реактор БОР-60, г. Димитровград
Реактор БН-350, г. Шевченко
Реактор БН-600
Реактор БН-800
Реактор БН-1200
ВВЭР
(Водо-Водяной Энергетический Реактор)
АЭС с ВВЭР-440
ВВЭР-1200
ВВЭР-1000
Реактор Большой Мощности Канальный (РБМК)
РБМК-1000 история создания
Устройство реактора РБМК-1000
Концепции безопасности реакторов РБМК
Тепловыделяющая сборка
Атомные станции
Белоярская АЭС
Ленинградская АЭС
Ленинградская АЭС-2
Белорусская АЭС
Нововоронежская АЭС
Нововоронежская АЭС-2
Ростовская АЭС
Смоленская атомная станция САЭС
Месторасположение Смоленской АЭС
История строительства
Деятельность
Экологическая политика
Экологический контроль
Атомные надводные корабли
Суда с ядерными энергетическими установками в России
Обзор судов с ядерной энергетической установкой
Атомная установка на авианосце
Атомный авианосец проекта «Шторм»
Тяжёлые атомные ракетные крейсеры проекта «Орлан»
История создания крейсеров проекта «Орлан»
Вооружение крейсеров проекта «Орлан»
Атомные ледоколы
РИТМ-200 реактор для атомного ледокола
Судовая ядерная ППУ ледокола
Реактор ледокола
Корпус реактора
Система компенсации давления
Система газоудаления
Второй контур
Атомная подводная лодка
Атомная шестиракетная субмарина «К-19»
Ракетный подводный крейсер стратегического назначения
АПЛ «Наутилус». США.
 

Предмет начертательной геометрии

В математическом энциклопедическом словаре дается следующее определение: «Начертательная геометрия – раздел геометрии, в котором пространственные фигуры, а также методы решения и исследования пространственных задач изучаются с помощью их изображений на плоскости».

Методы начертательной геометрии являются теоретической базой для решения задач технического черчения. В технике чертежи являются основным средством выражения человеческих идей. Они должны не только определять форму и размеры предметов, но и быть достаточно простыми и точными в графическом исполнении, помогать всесторонне исследовать предметы и их отдельные детали. Для того чтобы правильно выразить свои мысли с помощью рисунка, эскиза, чертежа требуется знание теоретических основ построения изображений геометрических объектов, их многообразие и отношения между ними, что и составляет предмет начертательной геометрии.

– общение становится более доступным, потому что образы, создаваемые на основе визуального (зрительного) восприятия, обладают большей, чем слова, ассоциативной силой;

– изображения являются интернациональным языком общения, тогда как, например, вербальное общение требует для понимания, как минимум знания языка собеседника.

Таким образом теоретические основы визуализации информации о геометрических объектах, многообразие геометрических объектов пространства, отношения между ними и их графического отображения на плоскости составляют предмет начертательной геометрии.

Задача этой науки – создание оптимальных геометрических форм объектов машиностроения, архитектуры и строительства, разработка теории графического отображения объектов и процессов.

Начертательная геометрия со времен ее основоположника Г. Монжа (1746-1818)  завоевала свое достойное место в высшей школе как наука. Важнейшее прикладное значение начертательной геометрии как учебной дисциплины состоит в том, что она учит владеть графическим языком, выполнять и читать чертежи и другие изображения геометрических объектов, без чего немыслимо формирование инженера. Она обеспечивает преемственность между школьными курсами геометрии и черчения и графическими дисциплинами вуза.

Изучение начертательной геометрии способствует развитию пространственного воображения и навыков правильного логического мышления. Совершенствуя нашу способность - по плоскому изображению мысленно создавать представления о форме предмета и наоборот создание изображений мысленно созданных образов – визуализация мысли.

Однако не всякое изображение отображает геометрические свойства оригинала и не может быть принято для всестороннего его исследования. Принципиальное отличие методов изображения, изучаемых в курсе начертательной геометрии, от некоторых современных технических средств отображения (фотография, голография и др.), заключается в возможности с большой наглядностью и метрической достоверностью отобразить не только существующие предметы, но и возникающие в нашем представлении образы проектируемого объекта.

Изображение, которое позволяет определять взаимосвязь (взаимопринадлежность) элементов объекта, называют полным.

Изображения, по которым можно определить размеры объекта, называется метрически определенными.

Из плоскостных изображений объекта наиболее широкое применение в практике получили рисунки и чертежи. Рисунком называют изображение предмета от руки и на глаз с кажущимися относительными размерами и положениями отдельных его элементов. Чертежом называют изображение предмета, построенное по особым правилам с помощью чертежных инструментов в точной зависимости от размеров и положения в пространстве соответствующих линий предмета.

В технике чертежи являются основным средством выражения человеческих идей. Они должны не только определять форму и размеры предметов, но и быть достаточно простыми и точными в графическом исполнении, помогать всесторонне, исследовать предметы и их отдельные детали.

Эти требования к чертежам и привели к созданию теории изображений, составляющей основу начертательной геометрии. Правила построения изображений основаны на методе проекций. Поэтому проекционный метод построения изображений является основным методом начертательной геометрии

Итак, в курсе начертательной геометрии изучаются:

  1. методы отображения пространственных объектов на плоскости;

  2. способы графического и аналитического решения различных геометрических задач;

  3. приемы увеличения наглядности и визуальной достоверности изображений проецируемого объекта;

  4. способы преобразования и исследования геометрических свойств изображенного объекта;

  5. основы моделирования геометрических объектов.

Виды проецирования.

 

Одно из основных геометрических понятий - отображение множеств. В начертательной геометрии каждой точке трехмерного пространства ставится в соответствие определенная точка двумерного пространства – плоскости. Геометрическими элементами отображения служат точки, линии, поверхности пространства. Геометрический объект, рассматриваемый  как точечное множество отображается на плоскость по закону проецирования. Результатом такого отображения является изображение объекта.

В основу любого изображение положена операция проецирования, которая заключается в следующем. В пространстве выбирают произвольную точку S (рис.1.1) в качестве центра проецирования и плоскость Пi, не проходящая через точку S, в качестве плоскости проекций ( картинной плоскости). Чтобы спроецировать точку А на плоскость Пi , через центр проецирования S проводят луч SА до его пересечения с плоскостью Пi в точке Аi. Точку Аi принято называть центральной проекцией точки А , а луч SА - проецирующим лучом.

Описанные построения выражают суть операции, называемой центральным проецированием точек пространства на плоскость.

В евклидовом пространстве существуют точки, которые не имеют центральных проекций, и наоборот в плоскости Пi  есть точки, которые в пространстве не имеют оригиналов (точки D и F).

Точка F прямой m принадлежит плоскости , , проходящей через центр проецирования S и расположенной параллельно плоскости проекций, таким образом проецирующий луч SF параллелен плоскости проекций, а точка F, как и все точки лежащие в плоскости не имеют центральных проекций на Пi.

Центральное проецирование

Рисунок 1.1. Центральное проецирование

Точка Di проекции прямой mi не имеет оригинала на прямой m, так как проецирующий луч SDi параллелен прямой.

Для исключения подобных случаев евклидово пространство расширяют введением несобственных (бесконечно удаленных) точек. Такое пространство называется расширенным евклидовым пространством.

Проецирующие лучи, проведенные через все точки кривой n, образуют проецирующую коническую поверхность N (рис. 1.2). Проекция криволинейной фигуры, таким образом, представляет собой линию пересечения проецирующей поверхности N и плоскости проекций Пi.

Рисунок 1.2. Центральное проецирование линии

 

Рисунок 1.3. Центральное проецирование поверхности

Коническую поверхность К образуют лучи и при проецировании трехмерной фигуры (рис. 1.3). Линию Ki принято называть в этом случая очерковой или очерком данной фигуры.

Центральное проецирование есть наиболее общий случай проецирования геометрических объектов на плоскости.

Основными и неизменными его свойствами (инвариантами) являются следующие:

                    1)      проекция точки – точка;

                    2)      проекция прямой – прямая;

                    3)      если точка принадлежит прямой, то проекция этой точки принадлежит проекции прямой.

По принципу центрального проецирования работают фотоаппараты и кинокамеры. Упрощенная схема работы человеческого глаза близка к этому виду проецирования: роль центра проецирования выполняет оптический центр хрусталика, роль проецирующих прямых – лучи света; плоскостью проекций служит сетчатка глаза. Поэтому изображения, построенные по принципу центрального проецирования, наиболее наглядны и их широко используют в своей работе художники, архитекторы, дизайнеры и многие другие специалисты.

Параллельное проецирование

Частный случай центрального проецирования – параллельное проецирование, когда центр проецирования удален в бесконечность, при этом проецирующие лучи можно рассматривать как параллельные проецирующие прямые. Положение проецирующих прямых относительно плоскости проекций определяется направлением проецирования S (рис.1.4). В этом случае полученное изображение называют параллельной проекцией объекта.

При параллельном проецировании сохраняются свойства центрального и добавляются следующие:

  1. проекции параллельных прямых параллельны между собой;

  2. отношение отрезков прямой равно отношению их проекций;

  3. отношение отрезков двух параллельных прямых равно отношению их проекций.

В свою очередь параллельные проекции подразделяются на прямоугольные, когда проецирующие прямые перпендикулярны плоскости проекций, и косоугольные, когда направление проецирования образует с плоскостью проекций угол не равный 900.

 

Рисунок 1.4. Параллельное
проецирование

Таким образом ортогональное (прямоугольное) проецирование является частным случаем параллельного и полученная этим методом проекция объекта называется ортогональной.

Ортогональному проецированию присущи все свойства параллельного и  центрального проецирования и кроме того, справедлива теорема о проецировании прямого угла: если хотя бы одна сторона прямого угла параллельна плоскости проекций, а вторая не перпендикулярна ей, то прямой угол на эту плоскость проецируется в прямой угол.

 К проекционным изображениям в начертательной геометрии предъявляются следующие основные требования:

1. Обратимость – восстановление оригинала по его проекционным изображениям (чертежу) – возможность определять форму и размеры объекта, его положение и связь с окружающей средой;

2. Наглядность – чертеж должен  создавать  пространственное представление о форме предмета;

3. Точность – графические операции, выполненные на чертеже, должны давать достаточно точные результаты;

4. Простота – изображение должно быть простым по построению и должно допускать однозначное описание объекта в виде последовательности графических операций

 

Проекции с числовыми отметками

В проекциях с числовыми отметками плоскость проекций Пi называют плоскостью нулевого уровня и обозначают П0. Идея этого метода состоит в том, что на плоскость П0 ортогонально проецируют точку и вместе с проекцией точки задают ее расстояние до плоскости  П0 (рис. 1.5). Это расстояние называют числовой отметкой точки и задают обычно в метрах. Числовую отметку точки пишут внизу справа от обозначения ее изображения.

Очень удобно в проекциях с числовыми отметками изображать линии уровня, все точки которых имеют одинаковые отметки. Линии уровня проецируются на П0 без искажения своей формы (применяется в картографии).

Проекции с числовыми отметками позволяют просто решать многие задачи. Обратимость чертежей в проекциях с числовыми отметками очевидна.

 

Рисунок1.5. Сущность метода с числовыми отметками

Зарождение идеи этого метода относят к средним векам. Уже тогда многие народы, пользующие картами с показаниями морских глубин, умели изображать точку при помощи ее проекции и отметки. Однако теоретическое обоснование метод получил лишь в 19 веке (французский военный инженер – капитан Нуазе, 1823г.).

Чертежи в проекциях с числовыми отметками построены на одной плоскости проекций – на одной картине и часто называются однокартинными.

Метод  Монжа

Если информацию о расстоянии точки относительно плоскости проекции дать не с помощью числовой отметки, а с помощью второй проекции точки, построенной на второй плоскости проекций, то чертеж называют двухкартинным или комплексным. Основные принципы построения таких чертежей изложены Г. Монжем.

Гаспар Монж  крупный французский геометр конца 18, начала  19 веков, 1789-1794 гг. один из основателей  знаменитой политехнической школы в Париже и участник работ по введению метрической системы мер и весов.

Постепенно накопившиеся отдельные правила и приемы таких изображений были приведены в систему и развиты в труде Г. Монжа "Geometrie descriptive".

Изложенный Монжем метод - метод ортогонального проецирования, причем берутся две проекции на две взаимно перпендикулярные плоскости проекций, - обеспечивая выразительность, точность и удобоизмеримость  изображений предметов на плоскости, был и остается основным методом составления технических чертежей

В соответствии с методом предложенным Г. Монжем рассмотрим в пространстве две взаимно перпендикулярные плоскости проекций (рис.1.6). Одну из плоскостей проекций П1   располагают горизонтально, а вторую П2 - вертикально. П1 - горизонтальная плоскость проекций, П2- фронтальная. Плоскости бесконечны и непрозрачны.

Плоскости проекций делят  пространство на четыре двугранных угла – четверти. Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций.

Линия пересечения плоскостей проекций называется осью координат  и обозначается x12.

Так как эти плоскости непрозрачны, то видимыми для наблюдателя будут только те геометрические объекты, которые располагаются в пределах той же первой четверти.

Получение эпюра из модели двух плоскостей проекций

Рисунок 1.6. Пространственная модель двух плоскостей проекций

Чтобы получить плоский чертеж, состоящий из указанных проекций, плоскость П1 совмещают вращением вокруг оси x12 с плоскостью П2 (рис.1.6). Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещенные определенным образом одна с другой, называется эпюром (Франц. Epure – чертеж.).Эпюр часто называют эпюром Монжа.

Геометрические объекты делятся на: линейные (точка, прямая, плоскость), нелинейные (кривая линия, поверхность) и составные (многогранники, одномерные и двумерные обводы).

Рассмотрим способы их образования, графического задания и возможные варианты положения по отношению к плоскостям проекций.

Точка в ортогональной системе двух плоскостей проекций.

Точка

Геометрический объект любой сложности можно рассматривать как геометрическое место точек, по взаимному расположению, которых можно составить представление об объекте, а по расположению их относительно системы координат можно судить о положении его в пространстве.

Точка - одно из основных понятий геометрии. При систематическом изложении геометрии точка обычно принимается за одно из исходных понятий.

В современной математике точкой называют элементы весьма различной природы, из которых состоят различные пространства (например, в n-мерном евклидовом пространстве точкой называют упорядоченную совокупность из n- чисел). [an error occurred while processing this directive]

 

Точка в ортогональной системе двух плоскостей проекций.

При построении проекции необходимо помнить, что ортогональной проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на эту плоскость. На рисунке 2.1. показана точка А и ее ортогональные проекции А1 и А 2. [an error occurred while processing this directive]

Точку А1 называют горизонтальной проекцией точки А, точка А2 - ее фронтальной проекцией. Проекции точки всегда расположены на прямых, перпендикулярных оси x12 и пересекающих эту ось в одной и той же точке А x.

а) модель Получение эпюра точки из модели б) эпюр

Рисунок. 2.1. Точка в системе двух плоскостей проекций

Справедливо и обратное, т. е. Если на плоскостях проекций даны точки А1 и А2 расположенные на прямых, пересекающих ось x12 в точке Аx  под прямым углом, то они являются проекцией некоторой точки А.

На эпюре Монжа проекции А1 и А2 окажутся расположенными на одном перпендикуляре к оси x12. При этом расстояние А1Аx -от горизонтальной проекции точки до  оси равно расстоянию от самой точки А до плоскости П2, а расстояние А2Аx - от фронтальной проекции точки до оси равно расстоянию от самой точки А до плоскости П1.

Прямые линии, соединяющие разноименные проекции точки на эпюре, называются линиями проекционной связи.

а) модель

Получение эпюра из модели

б) эпюр

Рисунок 2.2. Точки в различных четвертях пространства

 На рисунке 2.2 представлены точки A B C D, расположенные в разных четвертях пространства и  их эпюр (A- в первой четверти, B-во второй, C- в третьей и D- четвертой четверти)

 

Точка в ортогональной системе трех плоскостей проекций

В практике изображения различных геометрических объектов, чтобы сделать проекционный чертеж более ясным, возникает необходимость использовать третью – профильную плоскость проекций П3, расположенную перпендикулярно  к П1 и П2. В соответствии с ГОСТ 2.305-68 плоскости проекций П1 П2 и П3  относятся к  основным плоскостям проекций.

а) модель

Получение эпюра из модели

б) эпюр

Рисунок 2.3. Точка в системе трех плоскостей проекций

 

Модель трех плоскостей проекций показана на рисунке 2.3. Третья плоскость, перпендикулярная и П1,  и П2,  обозначается буквой П3 и называется профильной.

Проекции точек на эту плоскость обозначаются заглавными буквами или цифрами с индексом 3.

Плоскости проекций, попарно пересекаясь, определяют три оси 0x, 0y и 0z, которые можно рассматривать как систему декартовых координат в пространстве с началом в точке 0.

Три плоскости проекций делят пространство на восемь трехгранных углов - октантов. Как и прежде, будем считать, что зритель, рассматривающий предмет, находится в первом октанте.

Для получения эпюра точки в системе трех плоскостей проекций плоскости П1 и П3 вращают, как показано на рисунке 2.4, до совмещения с плоскостью П2. При обозначении осей на эпюре отрицательные полуоси обычно не указывают.  Если существенно только само изображение предмета, а не его положение относительно плоскостей проекций, то оси на эпюре не показывают.

Координатами называют числа, которые ставят в соответствие точке для определения ее положения в пространстве или на поверхности. В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат x , y  и  z  (абсцисса, ордината и аппликата).

Рисунок 2.4. Получение эпюра

Получение эпюра из модели трех плоскостей проекций

Таблица 2.1.Знаки координат в октантах

Октант

I

II

III

IV

V

VI

VII

VIII

x

+

+

+

+

-

-

-

-

y

+

-

-

+

+

-

-

+

z

+

+

-

-

+

+

-

-

Если точка принадлежит хотя бы одной плоскости проекций, она занимает частное положение относительно плоскостей проекций. Если точка не принадлежит ни одной из плоскостей проекций, она занимает общее положение.

 

Взаимное расположение точек

Можно выделить три основных варианта взаимного расположения точек:

1.Пусть точки А и В (рис.2.5) расположены в первой четверти так, что:

- YА>YВ. Тогда точка А расположена дальше от плоскости П2 и ближе к наблюдателю, чем точка В

- ZА>ZВ. Тогда точка А расположена дальше от плоскости П1 и ближе к наблюдателю, чем точка В;

- XА<XВ. Тогда точка В расположена дальше от плоскости П3 и ближе к наблюдателю, чем (при взгляде слева) точка А;

а) модель Получение эпюра из модели б)эпюр

Рисунок 2.5. Взаимное расположение точек

2.– YА=YВ, то точки А и В равноудалены от плоскости П2 и их горизонтальные проекции расположатся на прямой А1В1// x12. Геометрическим местом таких точек служит плоскость, параллельная П2.

 ZА=ZВ, то точки А и В равноудалены от плоскости П1 и их фронтальные проекции расположатся на прямой А2В2// x12. Геометрическим местом таких точек служит плоскость, параллельная П1.

 XА=XВ, то точки А и В равноудалены от плоскости П3 и их горизонтальные  и фронтальные проекции расположатся, соответственно, на прямых А1В1// y и А2В2//z . Геометрическим местом таких точек служит плоскость, параллельная П3.

3. Если у точек равны две одноименные координаты, то они называются конкурирующими. Конкурирующие точки расположены на одной проецирующей прямой. На рис. 2.6 даны три пары таких точек, у которых:

а) модель

 

 

Получение эпюра из модели

б) эпюр

Рисунок 2.6. Конкурирующие точки

  • XА=XD;YА=YD;ZА>ZD;

  •   XA=XC;ZA=ZC;YA>YC;

  •   YA=YB;ZA=ZB;XA>XB;

Соответствующие проекции конкурирующих точек совпадают.

Различают: горизонтально конкурирующие точки А и D, расположенные на горизонтально проецирующей прямой АD ; фронтально конкурирующие точки A и C расположенные на фронтально проецирующей прямой AC; профильно конкурирующие точки A и B, расположенные на профильно проецирующей прямой AB.

    При проецировании на соответствующую плоскость проекций одна точка «закроет» другую точку, конкурирующую с ней, соответствующая проекция которой окажется невидимой

 

Вернуться на главную